Abstract
We prove by giving an example that when n ≥ 3 the asymptotic behavior of functionals ∫Ω[ε|∇2u|2+(1−|∇u|2)2/ε] is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see Aviles and Giga 1987) is no longer true in higher dimensions.