Header

UZH-Logo

Maintenance Infos

The performance of field sampling for parasite detection in a wild passerine


Abdu, Salamatu; Chimento, Michael; Alarcón‐Nieto, Gustavo; Zúñiga, Daniel; Aplin, Lucy M; Farine, Damien R; Brandl, Hanja B (2022). The performance of field sampling for parasite detection in a wild passerine. Ecology and Evolution, 12(8):e9242.

Abstract

Parasites can impact the behavior of animals and alter the interplay with ecological factors in their environment. Studying the effects that parasites have on animals thus requires accurate estimates of infections in individuals. However, quantifying parasites can be challenging due to several factors. Laboratory techniques, physiological fluctuations, methodological constraints, and environmental influences can introduce measurement errors, in particular when screening individuals in the wild. These issues are pervasive in ecological studies where it is common to sample study subjects only once. Such factors should be carefully considered when choosing a sampling strategy, yet presently there is little guidance covering the major sources of error. In this study, we estimate the reliability and sensitivity of different sampling practices at detecting two internal parasites-Serratospiculoides amaculata and Isospora sp.-in a model organism, the great tit Parus major. We combine field and captive sampling to assess whether individual parasite infection status and load can be estimated from single field samples, using different laboratory techniques-McMaster and mini-FLOTAC. We test whether they vary in their performance, and quantify how sample processing affects parasite detection rates. We found that single field samples had elevated rates of false negatives. By contrast, samples collected from captivity over 24 h were highly reliable (few false negatives) and accurate (repeatable in the intensity of infection). In terms of methods, we found that the McMaster technique provided more repeatable estimates than the mini-FLOTAC for S. amaculata eggs, and both techniques were largely equally suitable for Isospora oocysts. Our study shows that field samples are likely to be unreliable in accurately detecting the presence of parasites and, in particular, for estimating parasite loads in songbirds. We highlight important considerations for those designing host-parasite studies in captive or wild systems giving guidance that can help select suitable methods, minimize biases, and acknowledge possible limitations.

Keywords: McMaster; fecal egg count; field sampling; mini‐FLOTAC; parasite infection; repeatability.

Abstract

Parasites can impact the behavior of animals and alter the interplay with ecological factors in their environment. Studying the effects that parasites have on animals thus requires accurate estimates of infections in individuals. However, quantifying parasites can be challenging due to several factors. Laboratory techniques, physiological fluctuations, methodological constraints, and environmental influences can introduce measurement errors, in particular when screening individuals in the wild. These issues are pervasive in ecological studies where it is common to sample study subjects only once. Such factors should be carefully considered when choosing a sampling strategy, yet presently there is little guidance covering the major sources of error. In this study, we estimate the reliability and sensitivity of different sampling practices at detecting two internal parasites-Serratospiculoides amaculata and Isospora sp.-in a model organism, the great tit Parus major. We combine field and captive sampling to assess whether individual parasite infection status and load can be estimated from single field samples, using different laboratory techniques-McMaster and mini-FLOTAC. We test whether they vary in their performance, and quantify how sample processing affects parasite detection rates. We found that single field samples had elevated rates of false negatives. By contrast, samples collected from captivity over 24 h were highly reliable (few false negatives) and accurate (repeatable in the intensity of infection). In terms of methods, we found that the McMaster technique provided more repeatable estimates than the mini-FLOTAC for S. amaculata eggs, and both techniques were largely equally suitable for Isospora oocysts. Our study shows that field samples are likely to be unreliable in accurately detecting the presence of parasites and, in particular, for estimating parasite loads in songbirds. We highlight important considerations for those designing host-parasite studies in captive or wild systems giving guidance that can help select suitable methods, minimize biases, and acknowledge possible limitations.

Keywords: McMaster; fecal egg count; field sampling; mini‐FLOTAC; parasite infection; repeatability.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 12 Sep 2022
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Ecology
Physical Sciences > Nature and Landscape Conservation
Uncontrolled Keywords:Nature and Landscape Conservation, Ecology, Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 August 2022
Deposited On:12 Sep 2022 11:04
Last Modified:27 Feb 2024 02:44
Publisher:Wiley Open Access
ISSN:2045-7758
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ece3.9242
PubMed ID:36016817
Project Information:
  • : FunderH2020
  • : Grant ID850859
  • : Project TitleECOLBEH - The Ecology of Collective Behaviour
  • : FunderMax-Planck-Gesellschaft
  • : Grant ID
  • : Project Title
  • : FunderSNSF
  • : Grant IDPCEFP3_187058
  • : Project TitleThe building blocks of complex animal societies
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)