Abstract
In this Note we prove the persistence of finite-dimensional invariant tori associated with the defocusing nonlinear Schrödinger equation under small Hamiltonian perturbations. The invariant tori are not necessarily small.
Navigation auf zora.uzh.ch
Grébert, B; Kappeler, T (1998). KAM theorem for the nonlinear Schrödinger equation. (Théorème de type KAM pour l‘équation de Schrödinger non linéaire.). Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 327(5):473-478.
In this Note we prove the persistence of finite-dimensional invariant tori associated with the defocusing nonlinear Schrödinger equation under small Hamiltonian perturbations. The invariant tori are not necessarily small.
Item Type: | Journal Article, refereed, original work |
---|---|
Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |
Dewey Decimal Classification: | 510 Mathematics |
Scopus Subject Areas: | Physical Sciences > General Mathematics |
Uncontrolled Keywords: | quasiperiodic solutions, Birkhoff variables, defocusing nonlinear Schrödinger equation, Hamiltonian system, small Hamiltonian perturbations, invariant tori |
Language: | French |
Date: | 1998 |
Deposited On: | 29 Nov 2010 16:28 |
Last Modified: | 07 Jan 2025 04:41 |
Publisher: | Elsevier |
ISSN: | 0764-4442 |
Additional Information: | English summary |
OA Status: | Closed |
Publisher DOI: | https://doi.org/10.1016/S0764-4442(99)80025-1 |
Related URLs: | http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0913.35125 http://www.ams.org/mathscinet-getitem?mr=1652566 |