Abstract
Over the past decade, rest-frame color–color diagrams have become popular tools for selecting quiescent galaxies at high redshift, breaking the color degeneracy between quiescent and dust-reddened star-forming galaxies. In this work, we study one such color–color selection tool—the rest-frame U − V versus V − J diagram—by employing mock observations of cosmological galaxy formation simulations. In particular, we conduct numerical experiments assessing both trends in galaxy properties in UVJ space and the color–color evolution of massive galaxies as they quench at redshifts z ∼ 1–2. We find that our models broadly reproduce the observed UVJ diagram at z = 1–2, including (for the first time in a cosmological simulation) reproducing the population of extremely dust-reddened galaxies in the top right of the UVJ diagram. However, our models primarily populate this region with low-mass galaxies and do not produce as clear a bimodality between star-forming and quiescent galaxies as is seen in observations. The former issue is due to an excess of dust in low-mass galaxies and relatively gray attenuation curves in high-mass galaxies, while the latter is due to the overpopulation of the green valley in simba. When investigating the time evolution of galaxies on the UVJ diagram, we find that the quenching pathway on the UVJ diagram is independent of the quenching timescale, and instead dependent primarily on the average specific star formation rate in the 1 Gyr prior to the onset of quenching. Our results support the interpretation of different quenching pathways as corresponding to the divergent evolution of post-starburst and green valley galaxies.