Header

UZH-Logo

Maintenance Infos

Shape-assisted self-assembly


Woods, Joseph F; Gallego, Lucía; Pfister, Pauline; Maaloum, Mounir; Vargas Jentzsch, Andreas; Rickhaus, Michel (2022). Shape-assisted self-assembly. Nature Communications, 13:3681.

Abstract

Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle. This makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, we demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions. Molecular units of remarkable simplicity self-assemble in solution to give single-molecule thin two-dimensional supramolecular polymers of defined boundaries. This dramatic example spotlights the critical function that topography can have in molecular assembly and paves the path to rationally designed systems of increasing sophistication.

Abstract

Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle. This makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, we demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions. Molecular units of remarkable simplicity self-assemble in solution to give single-molecule thin two-dimensional supramolecular polymers of defined boundaries. This dramatic example spotlights the critical function that topography can have in molecular assembly and paves the path to rationally designed systems of increasing sophistication.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 09 Jan 2023
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Chemistry
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Health Sciences > Multidisciplinary
Physical Sciences > General Physics and Astronomy
Uncontrolled Keywords:General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary
Language:English
Date:27 June 2022
Deposited On:09 Jan 2023 09:05
Last Modified:10 Jan 2023 21:00
Publisher:Nature Publishing Group
ISSN:2041-1723
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41467-022-31482-2
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)