Abstract
Embedding seven-membered rings into polycyclic aromatic molecules is attractive as they can exert an influence on molecular conformation that ultimately changes the solubility and π-electronics. The considerations in designing and synthesizing a highly strained azatriseptane framework is discussed herein. We employ a twofold macrocyclization strategy to form the [7,7,7]-system and through scoping various strategies identify a Friedel–Crafts approach is key. The synthetic limitations we have identified, in addition to the successes presented here, highlights the key challenges in forming triseptane frameworks and paves the way for second-generation analogues that may have various applications in optical as well as electronic organic materials.