Header

UZH-Logo

Maintenance Infos

Connection between water’s dynamical and structural properties: Insights from ab initio simulations


Herrero, Cecilia; Pauletti, Michela; Tocci, Gabriele; Iannuzzi, Marcella; Joly, Laurent (2022). Connection between water’s dynamical and structural properties: Insights from ab initio simulations. Proceedings of the National Academy of Sciences of the United States of America, 119(21):e2121641119.

Abstract

Among all fluids, water has always been of special concern for scientists from a wide variety of research fields because of its rich behavior. In particular, some questions remain unanswered today regarding the temperature dependence of bulk and interfacial transport properties of supercooled and liquid water, for example, regarding the fundamentals of the violation of the Stokes–Einstein relation in the supercooled regime, or the subtle relation between structure and dynamical properties. We have studied the temperature dependence of the bulk transport properties from ab initio molecular dynamics based on density functional theory, down to the supercooled regime. We determined, from a selection of functionals, that the SCAN (strongly constrained and appropriately normed) functional best describes the experimental viscosity and self-diffusion coefficient, although we found disagreements at lower temperatures. For a limited set of temperatures, we also explored the role of nuclear quantum effects on water dynamics using ab initio molecular dynamics that was accelerated by a recently introduced machine learning approach. We then investigated the molecular mechanisms underlying the different functionals’ performance and assessed the validity of the Stokes–Einstein relation. We also explored the connection between structural properties and transport coefficients, verifying the validity of the excess entropy scaling relations for all functionals. These results pave the way for the prediction of the transport coefficients from the radial distribution function, thus helping to develop better functionals. In this respect, these results indicate the importance of describing the long-range features of the radial distribution function.

Abstract

Among all fluids, water has always been of special concern for scientists from a wide variety of research fields because of its rich behavior. In particular, some questions remain unanswered today regarding the temperature dependence of bulk and interfacial transport properties of supercooled and liquid water, for example, regarding the fundamentals of the violation of the Stokes–Einstein relation in the supercooled regime, or the subtle relation between structure and dynamical properties. We have studied the temperature dependence of the bulk transport properties from ab initio molecular dynamics based on density functional theory, down to the supercooled regime. We determined, from a selection of functionals, that the SCAN (strongly constrained and appropriately normed) functional best describes the experimental viscosity and self-diffusion coefficient, although we found disagreements at lower temperatures. For a limited set of temperatures, we also explored the role of nuclear quantum effects on water dynamics using ab initio molecular dynamics that was accelerated by a recently introduced machine learning approach. We then investigated the molecular mechanisms underlying the different functionals’ performance and assessed the validity of the Stokes–Einstein relation. We also explored the connection between structural properties and transport coefficients, verifying the validity of the excess entropy scaling relations for all functionals. These results pave the way for the prediction of the transport coefficients from the radial distribution function, thus helping to develop better functionals. In this respect, these results indicate the importance of describing the long-range features of the radial distribution function.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

39 downloads since deposited on 31 Jan 2023
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Health Sciences > Multidisciplinary
Uncontrolled Keywords:Multidisciplinary
Language:English
Date:24 May 2022
Deposited On:31 Jan 2023 18:34
Last Modified:28 Jun 2024 01:38
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.2121641119
PubMed ID:35588447
  • Content: Accepted Version
  • Language: English
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)