Header

UZH-Logo

Maintenance Infos

Optimization of loading protocols for tissue engineering experiments


Ladner, Yann D; Armiento, Angela R; Kubosch, Eva J; Snedeker, Jess G; Stoddart, Martin J (2022). Optimization of loading protocols for tissue engineering experiments. Scientific Reports, 12(1):5094.

Abstract

Tissue engineering (TE) combines cells and biomaterials to treat orthopedic pathologies. Maturation of de novo tissue is highly dependent on local mechanical environments. Mechanical stimulation influences stem cell differentiation, however, the role of various mechanical loads remains unclear. While bioreactors simplify the complexity of the human body, the potential combination of mechanical loads that can be applied make it difficult to assess how different factors interact. Human bone marrow-derived mesenchymal stromal cells were seeded within a fibrin-polyurethane scaffold and exposed to joint-mimicking motion. We applied a full factorial design of experiment to investigate the effect that the interaction between different mechanical loading parameters has on biological markers. Additionally, we employed planned contrasts to analyze differences between loading protocols and a linear mixed model with donor as random effect. Our approach enables screening of multiple mechanical loading combinations and identification of significant interactions that could not have been studied using classical mechanobiology studies. This is useful to screen the effect of various loading protocols and could also be used for TE experiments with small sample sizes and further combinatorial medication studies.

Abstract

Tissue engineering (TE) combines cells and biomaterials to treat orthopedic pathologies. Maturation of de novo tissue is highly dependent on local mechanical environments. Mechanical stimulation influences stem cell differentiation, however, the role of various mechanical loads remains unclear. While bioreactors simplify the complexity of the human body, the potential combination of mechanical loads that can be applied make it difficult to assess how different factors interact. Human bone marrow-derived mesenchymal stromal cells were seeded within a fibrin-polyurethane scaffold and exposed to joint-mimicking motion. We applied a full factorial design of experiment to investigate the effect that the interaction between different mechanical loading parameters has on biological markers. Additionally, we employed planned contrasts to analyze differences between loading protocols and a linear mixed model with donor as random effect. Our approach enables screening of multiple mechanical loading combinations and identification of significant interactions that could not have been studied using classical mechanobiology studies. This is useful to screen the effect of various loading protocols and could also be used for TE experiments with small sample sizes and further combinatorial medication studies.

Statistics

Citations

Altmetrics

Downloads

3 downloads since deposited on 16 Jan 2023
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:24 March 2022
Deposited On:16 Jan 2023 16:02
Last Modified:07 Feb 2023 13:26
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-022-08849-y
PubMed ID:35332169
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)