Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Conjugate gradient methods for the Rayleigh quotient minimization of generalized eigenvalue problems

Yang, H (1993). Conjugate gradient methods for the Rayleigh quotient minimization of generalized eigenvalue problems. Computing, 51(1):79-94.

Abstract

Here we consider a modified version of the Rayleigh quotient conjugate gradient method of Bradbury and Fletcher for the computation of the smallest eigenvalue and a corresponding eigenvector ofAx=Bx, whereA andB are real symmetric andB is positive definite. Global convergence to an eigenpair is proved and, under certain conditions, convergence to the lowest eigenpair is obtained.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > Software
Physical Sciences > Theoretical Computer Science
Physical Sciences > Numerical Analysis
Physical Sciences > Computer Science Applications
Physical Sciences > Computational Theory and Mathematics
Physical Sciences > Computational Mathematics
Language:English
Date:1993
Deposited On:29 Nov 2010 16:29
Last Modified:07 Jan 2025 04:43
Publisher:Springer
ISSN:0010-485X
Additional Information:Conjugate gradient - Rayleigh quotient - eigenvalue - eigenvector
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/BF02243830
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1242660
http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0788.65043
Full text not available from this repository.

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Authors, Affiliations, Collaborations

Similar Publications