Abstract
The aim of this paper is to extend Stein's method to a compound Poisson distribution setting. The compound Poisson distributions of concern here are those of the form POIS$(\nu)$, where $\nu$ is a finite positive measure on $(0, \infty)$. A number of results related to these distributions are established. These in turn are used in a number of examples to give bounds for the error in the compound Poisson approximation to the distribution of a sum of random variables.