Abstract
In this paper, some numerical aspects of variational problems which fail to be convex are studied. It is well known that for such a problem, in general, the infimum of the energy (the functional that has to be minimized) fails to be attained. Instead, minimizing sequences develop oscillations which allow them to decrease the energy.It is shown that there exists a minimizes for an approximation of the problem and the oscillations in the minimizing sequence are analyzed. It is also shown that these minimizing sequences choose their gradients in the vicinity of the wells with a probability which tends to be constant. An estimate of the approximate deformation as it approximates a measure and some numerical results are also given. ©1992 Society for Industrial and Applied Mathematics