Abstract
We present an a posteriori error estimator for the non-conforming Crouzeix-Raviart discretization of the Stokes equations which is based on the local evaluation of residuals with respect to the strong form of the differential equation. The error estimator yields global upper and local lower bounds for the error of the finite element solution. It can easily be generalized to the stationary, incompressible Navier-Stokes equations and to other non-conforming finite element methods. Numerical examples show the efficiency of the proposed error estimator.