Header

UZH-Logo

Maintenance Infos

Effect of an Oxygen-Based Mechanical Drug Delivery System on Percutaneous Permeation of Various Substances In Vitro


Elksnat, Anna-Lena; Zscherpe, Paula; Klein, Karina; Cavalleri, Jessika Maximiliane; Meißner, Jessica (2022). Effect of an Oxygen-Based Mechanical Drug Delivery System on Percutaneous Permeation of Various Substances In Vitro. Pharmaceutics, 14(12):2722.

Abstract

Transdermal drug administration is an elegant method to overcome various side effects of oral or parenteral drug administration. Nevertheless, due to an effective skin barrier, which is provided by the stratum corneum, transdermal drug delivery is sometimes very slow and ineffective. Thus, the effect of a medical device (DERMADROP TDA) for transdermal penetration of drugs in conjunction with a special vehicle emulsion on percutaneous permeation of several substances (with different physicochemical properties) was investigated in Franz-type diffusion cells with porcine skin over 28 h. This medical device disperses pharmaceutical agents via oxygen flow through an application system, which is used in conjunction with specially developed vehicle substances. Substance permeation of various substances with different physicochemical properties (diclofenac, enrofloxacin, flufenamic acid, indomethacin, and salicylic acid) was examined after application with a pipette and with the medical device. Therefore, acceptor media samples were collected up to 28 h after drug administration. Drug concentration in the acceptor medium was determined via high-performance liquid chromatography. Enhanced permeation was observed for diclofenac, enrofloxacin, flufenamic acid, indomethacin, and salicylic acid after oxygen-based administration. This correlates negatively with the molecular weight. Thus, drug administration can effectively be enhanced by a medical device using oxygen.

Abstract

Transdermal drug administration is an elegant method to overcome various side effects of oral or parenteral drug administration. Nevertheless, due to an effective skin barrier, which is provided by the stratum corneum, transdermal drug delivery is sometimes very slow and ineffective. Thus, the effect of a medical device (DERMADROP TDA) for transdermal penetration of drugs in conjunction with a special vehicle emulsion on percutaneous permeation of several substances (with different physicochemical properties) was investigated in Franz-type diffusion cells with porcine skin over 28 h. This medical device disperses pharmaceutical agents via oxygen flow through an application system, which is used in conjunction with specially developed vehicle substances. Substance permeation of various substances with different physicochemical properties (diclofenac, enrofloxacin, flufenamic acid, indomethacin, and salicylic acid) was examined after application with a pipette and with the medical device. Therefore, acceptor media samples were collected up to 28 h after drug administration. Drug concentration in the acceptor medium was determined via high-performance liquid chromatography. Enhanced permeation was observed for diclofenac, enrofloxacin, flufenamic acid, indomethacin, and salicylic acid after oxygen-based administration. This correlates negatively with the molecular weight. Thus, drug administration can effectively be enhanced by a medical device using oxygen.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 21 Feb 2023
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinärwissenschaftliches Institut > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Pharmaceutical Science
Language:English
Date:5 December 2022
Deposited On:21 Feb 2023 07:02
Last Modified:28 Jun 2024 01:41
Publisher:MDPI Publishing
ISSN:1999-4923
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/pharmaceutics14122722
PubMed ID:36559216
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)