Abstract
Let W be a sum of Bernoulli random variables and Uλ a Poisson random variable having the same mean λ =EW. Using the Stein-Chen method and suitable couplings, general upper bounds for the variational distance between W and Uλ are given. These bounds are applied to problems of occupancy, using sampling with and without replacement and Pólya sampling, of capture-recapture, of spacings and of matching and ménage.