Header

UZH-Logo

Maintenance Infos

Single-domain stripe order in a high-temperature superconductor


Abstract

The coupling of spin, charge and lattice degrees of freedom results in the emergence of novel states of matter across many classes of strongly correlated electron materials. A model example is unconventional superconductivity, which is widely believed to arise from the coupling of electrons via spin excitations. In cuprate high-temperature superconductors, the interplay of charge and spin degrees of freedom is also reflected in a zoo of charge and spin-density wave orders that are intertwined with superconductivity. A key question is whether the different types of density waves merely coexist or are indeed directly coupled. Here we profit from a neutron scattering technique with superior beam-focusing that allows us to probe the subtle spin-density wave order in the prototypical high-temperature superconductor La$${}_{1.88}$$Sr$${}_{0.12}$$CuO$${}_{4}$$ under applied uniaxial pressure to demonstrate that the two density waves respond to the external tuning parameter in the same manner. Our result shows that suitable models for high-temperature superconductivity must equally account for charge and spin degrees of freedom via uniaxial charge-spin stripe fluctuations.

Abstract

The coupling of spin, charge and lattice degrees of freedom results in the emergence of novel states of matter across many classes of strongly correlated electron materials. A model example is unconventional superconductivity, which is widely believed to arise from the coupling of electrons via spin excitations. In cuprate high-temperature superconductors, the interplay of charge and spin degrees of freedom is also reflected in a zoo of charge and spin-density wave orders that are intertwined with superconductivity. A key question is whether the different types of density waves merely coexist or are indeed directly coupled. Here we profit from a neutron scattering technique with superior beam-focusing that allows us to probe the subtle spin-density wave order in the prototypical high-temperature superconductor La$${}_{1.88}$$Sr$${}_{0.12}$$CuO$${}_{4}$$ under applied uniaxial pressure to demonstrate that the two density waves respond to the external tuning parameter in the same manner. Our result shows that suitable models for high-temperature superconductivity must equally account for charge and spin degrees of freedom via uniaxial charge-spin stripe fluctuations.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Feb 2023
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > General Physics and Astronomy
Uncontrolled Keywords:General Physics and Astronomy
Language:English
Date:21 November 2022
Deposited On:18 Feb 2023 16:47
Last Modified:20 Feb 2023 14:15
Publisher:Nature Publishing Group
ISSN:2399-3650
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s42005-022-01061-4
Project Information:
  • : FunderSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  • : Grant ID
  • : Project Title
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)