Header

UZH-Logo

Maintenance Infos

Magnetic resonance spectroscopy investigations of functionally defined language areas in schizophrenia patients with and without auditory hallucinations


Homan, Philipp; Vermathen, Peter; Van Swam, Claudia; Federspiel, Andrea; Boesch, Chris; Strik, Werner; Dierks, Thomas; Hubl, Daniela; Kreis, Roland (2014). Magnetic resonance spectroscopy investigations of functionally defined language areas in schizophrenia patients with and without auditory hallucinations. NeuroImage, 94:23-32.

Abstract

BACKGROUND: Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS).

METHODS: Schizophrenia patients with (AH; n=12) and without hallucinations (NH; n=8) and healthy controls (HC; n=11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically.

RESULTS: The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4±6.1 mm (range: 2.7-36.1 mm) for Broca's area and 16.8±6.2 mm (range: 4.5-26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p=0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p=0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p=0.03) and negative (p=0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p=0.008).

CONCLUSION: This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions is needed if neurochemical imbalances are expected to be restricted to functional foci.

Abstract

BACKGROUND: Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS).

METHODS: Schizophrenia patients with (AH; n=12) and without hallucinations (NH; n=8) and healthy controls (HC; n=11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically.

RESULTS: The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4±6.1 mm (range: 2.7-36.1 mm) for Broca's area and 16.8±6.2 mm (range: 4.5-26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p=0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p=0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p=0.03) and negative (p=0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p=0.008).

CONCLUSION: This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions is needed if neurochemical imbalances are expected to be restricted to functional foci.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 15 Feb 2023
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Life Sciences > Cognitive Neuroscience
Language:English
Date:1 July 2014
Deposited On:15 Feb 2023 14:28
Last Modified:28 Jun 2024 01:42
Publisher:Elsevier
ISSN:1053-8119
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2014.03.009
PubMed ID:24650602