Header

UZH-Logo

Maintenance Infos

Primate pre-arcuate cortex actively maintains persistent representations of saccades from plans to outcomes


Calangiu, Ioana; Kollmorgen, Sepp; Reppas, John; Mante, Valerio (2022). Primate pre-arcuate cortex actively maintains persistent representations of saccades from plans to outcomes. bioRxiv 509463, Cold Spring Harbor Laboratory.

Abstract

Dorso-lateral prefrontal cortex is thought to contribute to adaptive behavior by integrating temporally dispersed, behaviorally-relevant factors. Past work has revealed a variety of neural representations preceding actions, which are involved in internal processes like planning, working memory and covert attention. Task-related activity following actions has often been reported, but so far lacks a clear interpretation. We leveraged modified versions of classic oculomotor paradigms and population recordings to show that post-saccadic activity is a dominant signal in dorso-lateral prefrontal cortex that is distinct from pre-saccadic activity. Unlike pre-saccadic activity, post-saccadic activity occurs after each saccade, although its strength and duration are modulated by task context and expected rewards. In contrast to representations preceding actions, which appear to be mixed randomly across neurons, post-saccadic activity results in representations that are highly structured at the single-neuron and population level. Overall, the properties of post-saccadic activity are consistent with those of an action memory, an internal process with a possible role in learning and updating spatial representations.

Abstract

Dorso-lateral prefrontal cortex is thought to contribute to adaptive behavior by integrating temporally dispersed, behaviorally-relevant factors. Past work has revealed a variety of neural representations preceding actions, which are involved in internal processes like planning, working memory and covert attention. Task-related activity following actions has often been reported, but so far lacks a clear interpretation. We leveraged modified versions of classic oculomotor paradigms and population recordings to show that post-saccadic activity is a dominant signal in dorso-lateral prefrontal cortex that is distinct from pre-saccadic activity. Unlike pre-saccadic activity, post-saccadic activity occurs after each saccade, although its strength and duration are modulated by task context and expected rewards. In contrast to representations preceding actions, which appear to be mixed randomly across neurons, post-saccadic activity results in representations that are highly structured at the single-neuron and population level. Overall, the properties of post-saccadic activity are consistent with those of an action memory, an internal process with a possible role in learning and updating spatial representations.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

43 downloads since deposited on 17 Feb 2023
41 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Working Paper
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2022
Deposited On:17 Feb 2023 12:42
Last Modified:29 May 2024 12:12
Series Name:bioRxiv
ISSN:2164-7844
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1101/2022.09.26.509463
  • Content: Published Version
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)