Header

UZH-Logo

Maintenance Infos

Investigating the Biocontrol Potential of the Natural Microbiota of the Apple Blossom


Schnyder, Anya; Eberl, Leo; Agnoli, Kirsty (2022). Investigating the Biocontrol Potential of the Natural Microbiota of the Apple Blossom. Microorganisms, 10(12):2480.

Abstract

Erwinia amylovora, the causative agent of fire blight, leads to important economic losses of apple and pear crops worldwide. This study aimed to investigate the potential of the resident microbiota of the apple blossom in combatting plant disease-causing organisms, with a focus on controlling fire blight. We obtained 538 isolates from sites around Canton Zurich, which we tested for activity against Pectobacterium carotovorum and E. amylovora. We also evaluated the isolates' activity against oomycete and fungal pathogens. Nine isolates showed activity against P. carotovorum, and eight of these against E. amylovora. Furthermore, 117 showed antifungal, and 161 anti-oomycete, activity. We assigned genera and in some cases species to 238 of the isolates by sequencing their 16S RNA-encoding gene. Five strains showed activity against all pathogens and were tested in a detached apple model for anti-E. amylovora activity. Of these five strains, two were able to antagonize E. amylovora, namely Bacillus velezensis #124 and Pantoea agglomerans #378. We sequenced the P. agglomerans #378 genome and analyzed it for secondary metabolite clusters using antiSMASH, revealing the presence of a putative bacteriocin cluster. We also showed that B. velezensis #124 exhibits strong activity against three different fungi and two oomycetes in vitro, suggesting a broader capacity for biocontrol. Our results showcase the protective potential of the natural apple blossom microbiota. We isolated two candidate biocontrol strains from apple blossoms, suggesting that they might persist at the most common entry point for the causative agent of fire blight. Furthermore, they are probably already part of the human diet, suggesting they might be safe for consumption, and thus are promising candidates for biocontrol applications.

Abstract

Erwinia amylovora, the causative agent of fire blight, leads to important economic losses of apple and pear crops worldwide. This study aimed to investigate the potential of the resident microbiota of the apple blossom in combatting plant disease-causing organisms, with a focus on controlling fire blight. We obtained 538 isolates from sites around Canton Zurich, which we tested for activity against Pectobacterium carotovorum and E. amylovora. We also evaluated the isolates' activity against oomycete and fungal pathogens. Nine isolates showed activity against P. carotovorum, and eight of these against E. amylovora. Furthermore, 117 showed antifungal, and 161 anti-oomycete, activity. We assigned genera and in some cases species to 238 of the isolates by sequencing their 16S RNA-encoding gene. Five strains showed activity against all pathogens and were tested in a detached apple model for anti-E. amylovora activity. Of these five strains, two were able to antagonize E. amylovora, namely Bacillus velezensis #124 and Pantoea agglomerans #378. We sequenced the P. agglomerans #378 genome and analyzed it for secondary metabolite clusters using antiSMASH, revealing the presence of a putative bacteriocin cluster. We also showed that B. velezensis #124 exhibits strong activity against three different fungi and two oomycetes in vitro, suggesting a broader capacity for biocontrol. Our results showcase the protective potential of the natural apple blossom microbiota. We isolated two candidate biocontrol strains from apple blossoms, suggesting that they might persist at the most common entry point for the causative agent of fire blight. Furthermore, they are probably already part of the human diet, suggesting they might be safe for consumption, and thus are promising candidates for biocontrol applications.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 16 Mar 2023
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Microbiology
Health Sciences > Microbiology (medical)
Life Sciences > Virology
Language:English
Date:15 December 2022
Deposited On:16 Mar 2023 12:04
Last Modified:29 Apr 2024 01:36
Publisher:MDPI Publishing
ISSN:2076-2607
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/microorganisms10122480
PubMed ID:36557734
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)