Header

UZH-Logo

Maintenance Infos

Soil evolution along an alluvial-loess transect in the Herat Plain, western Afghanistan


Mahmoudian, Farsila; Karimi, Alireza; Bayat, Omid (2022). Soil evolution along an alluvial-loess transect in the Herat Plain, western Afghanistan. Journal of Arid Land, 14(11):1317-1330.

Abstract

Afghanistan is located in the Eurasian loess belt, however, there is little information on the soils in the area. Loess has covered the Herat Plain in western Herat City, Afghanistan. Despite the diversity of landform and parent material, there is no information on the soil and landform evolution in this area. The objectives of this study were to identify the soils along a transect of different landforms in the Herat Plain and determine the role of geomorphic processes on the soil and landform evolution. Five pedons from an alluvial fan, the depression between alluvial fan and piedmont plain, saline and non-saline piedmont plains, and the flood plain of the Hariroud River, were sampled. Then, the physical-chemical properties, mineralogy, and micromorphology of the samples were determined. Results showed that the soil parent material in the piedmont plain is loess, whereas, in the flood plain it is a combination of loess and river alluvial sediments. Calcification, lessivage, salinization, and gleization are the most important pedogenic processes. The calcification and lessivage appear to be the result of a wetter climate during the late Quaternary, whereas the present topography causes the gleization and salinization. Clay coatings on carbonate nodules and iron nodules are abundant pedofeatures in the Btk (argillic-calcic) horizon. Iron oxides nodules are common in the soils of the flood plain. The formation of palygorskite in both alluvial-and loess-derived soils implies the onset of aridity and the trend of increase in environmental aridity in the region. It seems that after the formation of a well developed paleosol on the alluvial fan in a more humid climate in the past, the piedmont plain has been covered by loess deposits, and the calcification, gleization, and salinization cause the formation of weakly developed surficial soils. This study highlights the role of the late Quaternary climatic changes on the evolution of landforms and soils in western Afghanistan.

Abstract

Afghanistan is located in the Eurasian loess belt, however, there is little information on the soils in the area. Loess has covered the Herat Plain in western Herat City, Afghanistan. Despite the diversity of landform and parent material, there is no information on the soil and landform evolution in this area. The objectives of this study were to identify the soils along a transect of different landforms in the Herat Plain and determine the role of geomorphic processes on the soil and landform evolution. Five pedons from an alluvial fan, the depression between alluvial fan and piedmont plain, saline and non-saline piedmont plains, and the flood plain of the Hariroud River, were sampled. Then, the physical-chemical properties, mineralogy, and micromorphology of the samples were determined. Results showed that the soil parent material in the piedmont plain is loess, whereas, in the flood plain it is a combination of loess and river alluvial sediments. Calcification, lessivage, salinization, and gleization are the most important pedogenic processes. The calcification and lessivage appear to be the result of a wetter climate during the late Quaternary, whereas the present topography causes the gleization and salinization. Clay coatings on carbonate nodules and iron nodules are abundant pedofeatures in the Btk (argillic-calcic) horizon. Iron oxides nodules are common in the soils of the flood plain. The formation of palygorskite in both alluvial-and loess-derived soils implies the onset of aridity and the trend of increase in environmental aridity in the region. It seems that after the formation of a well developed paleosol on the alluvial fan in a more humid climate in the past, the piedmont plain has been covered by loess deposits, and the calcification, gleization, and salinization cause the formation of weakly developed surficial soils. This study highlights the role of the late Quaternary climatic changes on the evolution of landforms and soils in western Afghanistan.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

0 downloads since deposited on 08 May 2023
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Water Science and Technology
Physical Sciences > Earth-Surface Processes
Physical Sciences > Management, Monitoring, Policy and Law
Language:English
Date:2022
Deposited On:08 May 2023 09:29
Last Modified:29 Jun 2024 01:36
Publisher:Springer
ISSN:1674-6767
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s40333-022-0034-8