Header

UZH-Logo

Maintenance Infos

Small-scale spatial beta diversity of bacteria in the mixed upper layer of a lake


Pernthaler, Jakob; Krempaska, Natalia; Le Moigne, Alizée (2023). Small-scale spatial beta diversity of bacteria in the mixed upper layer of a lake. Environmental Microbiology, 25(10):1847-1859.

Abstract

Bacterial community composition among individual, experimentally generated 'lake snow' particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably 'tychoplanktic' (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.

Abstract

Bacterial community composition among individual, experimentally generated 'lake snow' particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably 'tychoplanktic' (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

21 downloads since deposited on 27 Jun 2023
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
08 Research Priority Programs > Global Change and Biodiversity
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Ecology, Evolution, Behavior and Systematics
Language:English
Date:October 2023
Deposited On:27 Jun 2023 11:54
Last Modified:29 Jun 2024 01:36
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1462-2912
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1111/1462-2920.16399
PubMed ID:37173811
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)