Header

UZH-Logo

Maintenance Infos

Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study


Goig, Galo A; Menardo, Fabrizio; Salaam-Dreyer, Zubeida; Dippenaar, Anzaan; Streicher, Elizabeth M; Daniels, Johnny; Reuter, Anja; Borrell, Sonia; Reinhard, Miriam; Doetsch, Anna; Beisel, Christian; Warren, Robin M; Cox, Helen; Gagneux, Sebastien (2023). Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. The Lancet Microbe, 4(7):e506-e515.

Abstract

BACKGROUND: Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa.
METHODS: We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains.
FINDINGS: Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors.
INTERPRETATION: Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented.

Abstract

BACKGROUND: Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa.
METHODS: We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains.
FINDINGS: Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors.
INTERPRETATION: Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 29 Jun 2023
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:1 July 2023
Deposited On:29 Jun 2023 09:51
Last Modified:28 Feb 2024 02:58
Publisher:Elsevier
ISSN:2666-5247
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/S2666-5247(23)00110-6
PubMed ID:37295446
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)