Header

UZH-Logo

Maintenance Infos

Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote


Štefanić, Saša; Morf, L; Kulangara, C; Regös, A; Sonda, S; Schraner, Elisabeth; Spycher, C; Wild, P; Hehl, A B (2009). Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. Journal of Cell Science, 122(Pt 16):2846-2856.

Abstract

The highly reduced protozoan parasite Giardia lamblia has minimal machinery for cellular processes such as protein trafficking. Giardia trophozoites maintain diverse and regulated secretory pathways but lack an identifiable Golgi complex. During differentiation to cysts, however, they produce specialized compartments termed encystation-specific vesicles (ESVs). ESVs are hypothesized to be unique developmentally regulated Golgi-like organelles dedicated to maturation and export of pre-sorted cyst wall proteins. Here we present a functional analysis of this unusual compartment by direct interference with the functions of the small GTPases Sar1, Rab1 and Arf1. Conditional expression of dominant-negative variants revealed an essential role of Sar1 in early events of organelle neogenesis, whilst inhibition of Arf1 uncoupled morphological changes and cell cycle progression from extracellular matrix export. The latter led to development of ;naked cysts', which lacked water resistance and thus infectivity. Time-lapse microscopy and photobleaching experiments showed that putative Golgi-like cisternae in Giardia develop into a network capable of exchanging soluble cargo at a high rate via dynamic, tubular connections, presumably to synchronize maturation. The minimized and naturally pulsed trafficking machinery for export of the cyst wall biopolymer in Giardia is a simple model for investigating basic principles of neogenesis and maturation of Golgi compartments.

Abstract

The highly reduced protozoan parasite Giardia lamblia has minimal machinery for cellular processes such as protein trafficking. Giardia trophozoites maintain diverse and regulated secretory pathways but lack an identifiable Golgi complex. During differentiation to cysts, however, they produce specialized compartments termed encystation-specific vesicles (ESVs). ESVs are hypothesized to be unique developmentally regulated Golgi-like organelles dedicated to maturation and export of pre-sorted cyst wall proteins. Here we present a functional analysis of this unusual compartment by direct interference with the functions of the small GTPases Sar1, Rab1 and Arf1. Conditional expression of dominant-negative variants revealed an essential role of Sar1 in early events of organelle neogenesis, whilst inhibition of Arf1 uncoupled morphological changes and cell cycle progression from extracellular matrix export. The latter led to development of ;naked cysts', which lacked water resistance and thus infectivity. Time-lapse microscopy and photobleaching experiments showed that putative Golgi-like cisternae in Giardia develop into a network capable of exchanging soluble cargo at a high rate via dynamic, tubular connections, presumably to synchronize maturation. The minimized and naturally pulsed trafficking machinery for export of the cyst wall biopolymer in Giardia is a simple model for investigating basic principles of neogenesis and maturation of Golgi compartments.

Statistics

Citations

Dimensions.ai Metrics
47 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

124 downloads since deposited on 28 Oct 2009
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Anatomy
05 Vetsuisse Faculty > Institute of Parasitology
04 Faculty of Medicine > Institute of Parasitology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
600 Technology
Scopus Subject Areas:Life Sciences > Cell Biology
Language:English
Date:15 August 2009
Deposited On:28 Oct 2009 12:14
Last Modified:27 Jun 2022 07:35
Publisher:Company of Biologists
ISSN:0021-9533
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1242/jcs.049411
PubMed ID:19622633