Header

UZH-Logo

Maintenance Infos

Donors, acceptors, and a bit of aromatics: electronic interactions of molecular adsorbates on hBN and MoS<sub>2</sub> monolayers


Melani, Giacomo; Guerrero-Felipe, Juan Pablo; Valencia, Ana M; Krumland, Jannis; Cocchi, Caterina; Iannuzzi, Marcella (2022). Donors, acceptors, and a bit of aromatics: electronic interactions of molecular adsorbates on hBN and MoS<sub>2</sub> monolayers. Physical Chemistry Chemical Physics (PCCP), 24(27):16671-16679.

Abstract

The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) monolayers. All considered interfaces are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates. The level alignment of the hybrid systems depends on the characteristics of the constituents. On hBN, both type-I and type-II interfaces may form, depending on the relative energies of the frontier orbitals with respect to the vacuum level. On the other hand, all MoS2-based hybrid systems exhibit a type-II level alignment, with the molecular frontier orbitals positioned across the energy gap of the semiconductor. The electronic structure of the hybrid materials is further determined by the formation of interfacial dipole moments and by the wave-function hybridization between the organic and inorganic constituents. These results provide important indications for the design of novel low-dimensional hybrid materials with suitable characteristics for opto-electronics.

Abstract

The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS2) monolayers. All considered interfaces are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates. The level alignment of the hybrid systems depends on the characteristics of the constituents. On hBN, both type-I and type-II interfaces may form, depending on the relative energies of the frontier orbitals with respect to the vacuum level. On the other hand, all MoS2-based hybrid systems exhibit a type-II level alignment, with the molecular frontier orbitals positioned across the energy gap of the semiconductor. The electronic structure of the hybrid materials is further determined by the formation of interfacial dipole moments and by the wave-function hybridization between the organic and inorganic constituents. These results provide important indications for the design of novel low-dimensional hybrid materials with suitable characteristics for opto-electronics.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 14 Jul 2023
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Physics and Astronomy
Physical Sciences > Physical and Theoretical Chemistry
Uncontrolled Keywords:Physical and Theoretical Chemistry, General Physics and Astronomy
Language:English
Date:1 January 2022
Deposited On:14 Jul 2023 09:47
Last Modified:29 Jun 2024 01:37
Publisher:Royal Society of Chemistry
ISSN:1463-9076
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1039/d2cp01502a
PubMed ID:35766517
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)