Abstract
A big part of software developers’ time is spent finding answers to their coding-task-related questions. To answer their questions, developers usually perform web searches, ask questions on Q&A websites, or, more recently, in chat communities. Yet, many of these questions have frequently already been answered in previous chat conversations or other online communities. Automatically identifying and then suggesting these previous answers to the askers could, thus, save time and effort. In an empirical analysis, we first explored the frequency of repeating questions on the Discord chat platform and assessed our approach to identify them automatically. The approach was then evaluated with real-world developers in a field experiment, through which we received 142 ratings on the helpfulness of the suggestions we provided to help answer 277 questions that developers posted in four Discord communities. We further collected qualitative feedback through 53 surveys and 10 follow-up interviews. We found that the suggestions were considered helpful in 40% of the cases, that suggesting Stack Overflow posts is more often considered helpful than past Discord conversations, and that developers have difficulties describing their problems as search queries and, thus, prefer describing them as natural language questions in online communities.