Header

UZH-Logo

Maintenance Infos

Assessment of the value of remotely sensed surface water extent data for the calibration of a lumped hydrological model


Meyer Oliveira, Aline; van Meerveld, H J; Vis, Marc J P; Seibert, Jan (2023). Assessment of the value of remotely sensed surface water extent data for the calibration of a lumped hydrological model. Water Resources Research, 59(11):34875.

Abstract

For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.

Abstract

For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

8 downloads since deposited on 09 Nov 2023
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Water Science and Technology
Language:English
Date:1 November 2023
Deposited On:09 Nov 2023 12:31
Last Modified:27 Jun 2024 03:37
Publisher:American Geophysical Union
ISSN:0043-1397
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1029/2023wr034875
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)