Header

UZH-Logo

Maintenance Infos

Good practices in EEG-MRI: The utility of retrospective synchronization and PCA for the removal of MRI gradient artefacts


Mandelkow, H; Brandeis, D; Boesiger, P (2010). Good practices in EEG-MRI: The utility of retrospective synchronization and PCA for the removal of MRI gradient artefacts. NeuroImage, 49(3):2287-2303.

Abstract

The electroencephalogram (EEG) recorded during magnetic resonance imaging (MRI) inside the scanner is obstructed by the MRI gradient artefact (MGA) originating from the electromagnetic interference of the MRI with the sensitive measurement of electrical scalp potentials. Post-processing algorithms based on average artefact subtraction (AAS) have proven to be efficient in removing the MGA. However, the residual MGA after AAS still limits the quality and usable bandwidth of the EEG data despite further reduction through re-sampling, principal component analysis (PCA), and regressive filtering. We recently demonstrated that the residual MGA can largely be avoided by means of hardware synchronisation. Here we present a new software synchronisation method, which substitutes hardware synchronisation and facilitates the removal of motion artefacts by PCA. The effectiveness of the retrospective synchronisation algorithm (Resync) is demonstrated by comparison to the aforementioned techniques. For this purpose we also developed a method for simulating the MGA and we propose new concepts for quantifying and comparing the performance of post-processing algorithms for EEG-MRI data. Results indicate that the benefits of (retrospective) synchronisation and PCA depend largely on the relative contribution of timing errors and motion artefacts to the residual MGA as well as the frequency range of interest.

Abstract

The electroencephalogram (EEG) recorded during magnetic resonance imaging (MRI) inside the scanner is obstructed by the MRI gradient artefact (MGA) originating from the electromagnetic interference of the MRI with the sensitive measurement of electrical scalp potentials. Post-processing algorithms based on average artefact subtraction (AAS) have proven to be efficient in removing the MGA. However, the residual MGA after AAS still limits the quality and usable bandwidth of the EEG data despite further reduction through re-sampling, principal component analysis (PCA), and regressive filtering. We recently demonstrated that the residual MGA can largely be avoided by means of hardware synchronisation. Here we present a new software synchronisation method, which substitutes hardware synchronisation and facilitates the removal of motion artefacts by PCA. The effectiveness of the retrospective synchronisation algorithm (Resync) is demonstrated by comparison to the aforementioned techniques. For this purpose we also developed a method for simulating the MGA and we propose new concepts for quantifying and comparing the performance of post-processing algorithms for EEG-MRI data. Results indicate that the benefits of (retrospective) synchronisation and PCA depend largely on the relative contribution of timing errors and motion artefacts to the residual MGA as well as the frequency range of interest.

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

218 downloads since deposited on 11 Nov 2009
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Department of Child and Adolescent Psychiatry
04 Faculty of Medicine > Institute of Biomedical Engineering
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Life Sciences > Cognitive Neuroscience
Language:English
Date:2010
Deposited On:11 Nov 2009 13:12
Last Modified:01 Jul 2022 14:05
Publisher:Elsevier
ISSN:1053-8119
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2009.10.050
PubMed ID:19892021
  • Content: Accepted Version