Header

UZH-Logo

Maintenance Infos

PAM-flexible genome editing with an engineered chimeric Cas9


Abstract

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications. In total, the approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.

Abstract

CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications. In total, the approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 28 Nov 2023
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:610 Medicine & health
570 Life sciences; biology
Scopus Subject Areas:Physical Sciences > General Chemistry
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Physical Sciences > General Physics and Astronomy
Language:English
Date:4 October 2023
Deposited On:28 Nov 2023 09:52
Last Modified:29 Jun 2024 01:40
Publisher:Nature Publishing Group
ISSN:2041-1723
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41467-023-41829-y
PubMed ID:37794046
Other Identification Number:PMCID: PMC10550912
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)