Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two

Ghazouani, Selim; Ulcigrai, Corinna (2023). A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two. Publications mathématiques de l'IHÉS, 138(1):229-366.

Abstract

We prove a rigidity result for foliations on surfaces of genus two, which can be seen as a generalization to higher genus of Herman’s theorem on circle diffeomorphisms and, correspondingly, flows on the torus. We prove in particular that, if a smooth, orientable foliation with non-degenerate (Morse) singularities on a closed surface of genus two is minimal, then, under a full measure condition for the rotation number, it is differentiably conjugate to a linear foliation.The corresponding result at the level of Poincaré sections is that, for a full measure set of (standard) interval exchange transformations (IETs for short) with $d=4$ or $d=5$ continuity intervals and irreducible combinatorics, any generalized interval exchange transformation (GIET for short) which is topologically conjugate to a standard IET from this set and satisfies an obstruction expressed in terms of boundary operator (which is automatically satisfied when the GIET arises as a Poincaré map of a smooth foliation) is $\mathcal{C}^{1}$-conjugate to it. This in particular settles a conjecture by Marmi, Moussa and Yoccoz in genus two. Our results also show that this conjecture on the rigidity of GIETs can be reduced to the study of affine IETs, or more precisely of Birkhoff sums of piecewise constant observables over standard IETs, in genus $g \geq 3$.Our approach is via renormalization, namely we exploit a suitable acceleration of the Rauzy-Veech induction (an acceleration which makes Oseledets generic effective) on the space of GIETs. For in ly renormalizable, irrational GIETs of any number of intervals $d\geq 2$ we prove a dynamical dichotomy on the behaviour of the orbits under renormalization, by proving that either an orbit is recurrent to certain bounded sets in the space of GIETs, or it diverges and it is approximated (up to lower order terms) by the orbit of an affine IET (a case that we refer to as affine shadowing). This result can in particular be used, in conjunction with previous work by Marmi-Moussa and Yoccoz on the existence of wandering intervals for affine IETs, to prove, a priori bounds in genus two and is therefore at the base of the rigidity result.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > General Mathematics
Uncontrolled Keywords:General Mathematics
Language:English
Date:1 December 2023
Deposited On:20 Dec 2023 09:47
Last Modified:30 Oct 2024 02:38
Publisher:Springer
ISSN:0073-8301
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s10240-023-00142-6
Other Identification Number:MR4666932
Download PDF  'A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 20 Dec 2023
0 downloads since 12 months

Authors, Affiliations, Collaborations

Similar Publications