Header

UZH-Logo

Maintenance Infos

Neisseria gonorrhoeae Coinfection during Chlamydia muridarum Genital Latency Does Not Modulate Murine Vaginal Bacterial Shedding


Onorini, Delia; Leonard, Cory Ann; Phillips Campbell, Regenia; Prähauser, Barbara; Pesch, Theresa; Schoborg, Robert V; Jerse, Ann E; Tarigan, Bernadetta; Borel, Nicole (2023). Neisseria gonorrhoeae Coinfection during Chlamydia muridarum Genital Latency Does Not Modulate Murine Vaginal Bacterial Shedding. Microbiology Spectrum, 11(3):e0450022.

Abstract

Chlamydia trachomatis and Neisseria gonorrhoeae are the most frequently reported agents of bacterial sexually transmitted disease worldwide. Nonetheless, C. trachomatis/N. gonorrhoeae coinfection remains understudied. C. trachomatis/N. gonorrhoeae coinfections are more common than expected by chance, suggesting C. trachomatis/N. gonorrhoeae interaction, and N. gonorrhoeae infection may reactivate genital chlamydial shedding in women with latent (quiescent) chlamydial infection. We hypothesized that N. gonorrhoeae would reactivate latent genital Chlamydia muridarum infection in mice. Two groups of C. muridarum-infected mice were allowed to transition into genital latency. One group was then vaginally inoculated with N. gonorrhoeae; a third group received N. gonorrhoeae alone. C. muridarum and N. gonorrhoeae vaginal shedding was measured over time in the coinfected and singly infected groups. Viable C. muridarum was absent from vaginal swabs but detected in rectal swabs, confirming C. muridarum genital latency and consistent with the intestinal tract as a C. muridarum reservoir. C. muridarum inclusions were observed in large intestinal, but not genital, tissues during latency. Oviduct dilation was associated with C. muridarum infection, as expected. Contradicting our hypothesis, N. gonorrhoeae coinfection did not reactivate latent C. muridarum vaginal shedding. In addition, latent C. muridarum infection did not modulate recovery of vaginal viable N. gonorrhoeae. Evidence for N. gonorrhoeae-dependent increased C. muridarum infectivity has thus not been demonstrated in murine coinfection, and the ability of C. muridarum coinfection to potentiate N. gonorrhoeae infectivity may depend on actively replicating vaginal C. muridarum. The proportion of mice with increased vaginal neutrophils (PMNs) was higher in N. gonorrhoeae-infected than in C. muridarum-infected mice, as expected, while that of C. muridarum/N. gonorrhoeae-coinfected mice was intermediate to the singly infected groups, suggesting latent C. muridarum murine infection may limit PMN response to subsequent N. gonorrhoeae infection. IMPORTANCE Our work builds upon the limited understanding of C. muridarum/N. gonorrhoeae coinfection. Previously, N. gonorrhoeae infection of mice with acute (actively replicating) vaginal C. muridarum infection was shown to increase recovery of viable vaginal N. gonorrhoeae and vaginal PMNs, with no effect on C. muridarum vaginal shedding (R. A. Vonck et al., Infect Immun 79:1566-1577, 2011). It has also been shown that chlamydial infection of human and murine PMNs prevents normal PMN responses, including the response to N. gonorrhoeae (K. Rajeeve et al., Nat Microbiol 3:824-835, 2018). Our findings show no effect of latent genital C. muridarum infection on the recovery of viable N. gonorrhoeae, in contrast to the previously reported effect of acute C. muridarum infection, and suggesting that acute versus latent C. muridarum infection may have distinct effects on PMN function in mice. Together, these studies to date provide evidence that Chlamydia/N. gonorrhoeae synergistic interactions may depend on the presence of replicating Chlamydia in the genital tract, while chlamydial effects on vaginal PMNs may extend beyond acute infection.

Abstract

Chlamydia trachomatis and Neisseria gonorrhoeae are the most frequently reported agents of bacterial sexually transmitted disease worldwide. Nonetheless, C. trachomatis/N. gonorrhoeae coinfection remains understudied. C. trachomatis/N. gonorrhoeae coinfections are more common than expected by chance, suggesting C. trachomatis/N. gonorrhoeae interaction, and N. gonorrhoeae infection may reactivate genital chlamydial shedding in women with latent (quiescent) chlamydial infection. We hypothesized that N. gonorrhoeae would reactivate latent genital Chlamydia muridarum infection in mice. Two groups of C. muridarum-infected mice were allowed to transition into genital latency. One group was then vaginally inoculated with N. gonorrhoeae; a third group received N. gonorrhoeae alone. C. muridarum and N. gonorrhoeae vaginal shedding was measured over time in the coinfected and singly infected groups. Viable C. muridarum was absent from vaginal swabs but detected in rectal swabs, confirming C. muridarum genital latency and consistent with the intestinal tract as a C. muridarum reservoir. C. muridarum inclusions were observed in large intestinal, but not genital, tissues during latency. Oviduct dilation was associated with C. muridarum infection, as expected. Contradicting our hypothesis, N. gonorrhoeae coinfection did not reactivate latent C. muridarum vaginal shedding. In addition, latent C. muridarum infection did not modulate recovery of vaginal viable N. gonorrhoeae. Evidence for N. gonorrhoeae-dependent increased C. muridarum infectivity has thus not been demonstrated in murine coinfection, and the ability of C. muridarum coinfection to potentiate N. gonorrhoeae infectivity may depend on actively replicating vaginal C. muridarum. The proportion of mice with increased vaginal neutrophils (PMNs) was higher in N. gonorrhoeae-infected than in C. muridarum-infected mice, as expected, while that of C. muridarum/N. gonorrhoeae-coinfected mice was intermediate to the singly infected groups, suggesting latent C. muridarum murine infection may limit PMN response to subsequent N. gonorrhoeae infection. IMPORTANCE Our work builds upon the limited understanding of C. muridarum/N. gonorrhoeae coinfection. Previously, N. gonorrhoeae infection of mice with acute (actively replicating) vaginal C. muridarum infection was shown to increase recovery of viable vaginal N. gonorrhoeae and vaginal PMNs, with no effect on C. muridarum vaginal shedding (R. A. Vonck et al., Infect Immun 79:1566-1577, 2011). It has also been shown that chlamydial infection of human and murine PMNs prevents normal PMN responses, including the response to N. gonorrhoeae (K. Rajeeve et al., Nat Microbiol 3:824-835, 2018). Our findings show no effect of latent genital C. muridarum infection on the recovery of viable N. gonorrhoeae, in contrast to the previously reported effect of acute C. muridarum infection, and suggesting that acute versus latent C. muridarum infection may have distinct effects on PMN function in mice. Together, these studies to date provide evidence that Chlamydia/N. gonorrhoeae synergistic interactions may depend on the presence of replicating Chlamydia in the genital tract, while chlamydial effects on vaginal PMNs may extend beyond acute infection.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 20 Dec 2023
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinärwissenschaftliches Institut > Institute of Veterinary Pathology
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Physiology
Physical Sciences > Ecology
Life Sciences > General Immunology and Microbiology
Life Sciences > Genetics
Health Sciences > Microbiology (medical)
Life Sciences > Cell Biology
Health Sciences > Infectious Diseases
Uncontrolled Keywords:Infectious Diseases, Cell Biology, Microbiology (medical), Genetics, General Immunology and Microbiology, Ecology, Physiology
Language:English
Date:15 June 2023
Deposited On:20 Dec 2023 13:19
Last Modified:29 Jun 2024 01:41
Publisher:American Society for Microbiology
ISSN:2165-0497
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/spectrum.04500-22
PubMed ID:37039695
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)