Header

UZH-Logo

Maintenance Infos

Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3


Abstract

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700  Gpc−3 yr−1 and the neutron star–black hole merger rate to be between 7.8 and 140  Gpc−3 yr−1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44  Gpc−3 yr−1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9+1.7−1.8 for z≲1. Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2+0.1−0.2 to 2.0+0.3−0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3+0.3−0.5 and 27.9+1.9−1.8M⊙. While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum.

Abstract

We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700  Gpc−3 yr−1 and the neutron star–black hole merger rate to be between 7.8 and 140  Gpc−3 yr−1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44  Gpc−3 yr−1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9+1.7−1.8 for z≲1. Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2+0.1−0.2 to 2.0+0.3−0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3+0.3−0.5 and 27.9+1.9−1.8M⊙. While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum.

Statistics

Citations

Dimensions.ai Metrics

287 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 03 Jan 2024
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not_refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > General Physics and Astronomy
Uncontrolled Keywords:General Physics and Astronomy
Language:English
Date:29 March 2023
Deposited On:03 Jan 2024 09:30
Last Modified:28 Jun 2024 03:32
Publisher:American Physical Society
ISSN:2160-3308
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1103/physrevx.13.011048
Project Information:
  • : FunderNational Science Foundation
  • : Grant ID
  • : Project Title
  • : FunderScience and Technology Facilities Council
  • : Grant ID
  • : Project Title
  • : FunderAustralian Research Council
  • : Grant ID
  • : Project Title
  • : FunderInstituto Nazionale di Fisica Nucleare
  • : Grant ID
  • : Project Title
  • : FunderCentre National de la Recherche Scientifique
  • : Grant ID
  • : Project Title
  • : FunderCouncil of Scientific and Industrial Research, India
  • : Grant ID
  • : Project Title
  • : FunderDepartment of Science and Technology, Ministry of Science and Technology, India
  • : Grant ID
  • : Project Title
  • : FunderScience and Engineering Research Board
  • : Grant ID
  • : Project Title
  • : FunderMinistry of Education, India
  • : Grant ID
  • : Project Title
  • : FunderAgencia Estatal de Investigación
  • : Grant ID
  • : Project Title
  • : FunderMinisterio de Ciencia e Innovación
  • : Grant ID
  • : Project Title
  • : FunderGovern de les Illes Balears
  • : Grant ID
  • : Project Title
  • : FunderConselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
  • : Grant ID
  • : Project Title
  • : FunderGeneralitat Valenciana
  • : Grant ID
  • : Project Title
  • : FunderGeneralitat de Catalunya
  • : Grant ID
  • : Project Title
  • : FunderNarodowe Centrum Nauki
  • : Grant ID
  • : Project Title
  • : FunderEuropean Regional Development Fund
  • : Grant ID
  • : Project Title
  • : FunderFundacja na rzecz Nauki Polskiej
  • : Grant ID
  • : Project Title
  • : FunderSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  • : Grant ID
  • : Project Title
  • : FunderRussian Foundation for Basic Research
  • : Grant ID
  • : Project Title
  • : FunderRussian Science Foundation
  • : Grant ID
  • : Project Title
  • : FunderEuropean Commission
  • : Grant ID
  • : Project Title
  • : FunderEuropean Social Fund
  • : Grant ID
  • : Project Title
  • : FunderRoyal Society
  • : Grant ID
  • : Project Title
  • : FunderScottish Funding Council
  • : Grant ID
  • : Project Title
  • : FunderScottish Universities Physics Alliance
  • : Grant ID
  • : Project Title
  • : FunderHungarian Scientific Research Fund
  • : Grant ID
  • : Project Title
  • : FunderInstitut des Origines de Lyon
  • : Grant ID
  • : Project Title
  • : FunderFonds De La Recherche Scientifique - FNRS
  • : Grant ID
  • : Project Title
  • : FunderFonds Wetenschappelijk Onderzoek
  • : Grant ID
  • : Project Title
  • : FunderConseil Régional, Île-de-France
  • : Grant ID
  • : Project Title
  • : FunderNemzeti Kutatási, Fejlesztési és Innovaciós Alap
  • : Grant ID
  • : Project Title
  • : FunderNatural Sciences and Engineering Research Council of Canada
  • : Grant ID
  • : Project Title
  • : FunderCanada Foundation for Innovation
  • : Grant ID
  • : Project Title
  • : FunderICTP South American Institute for Fundamental Research
  • : Grant ID
  • : Project Title
  • : FunderResearch Grants Council, University Grants Committee
  • : Grant ID
  • : Project Title
  • : FunderNational Natural Science Foundation of China
  • : Grant ID
  • : Project Title
  • : FunderLeverhulme Trust
  • : Grant ID
  • : Project Title
  • : FunderU.S. Department of Energy
  • : Grant ID
  • : Project Title
  • : FunderKavli Foundation
  • : Grant ID
  • : Project Title
  • : FunderMinistry of Education, Culture, Sports, Science and Technology
  • : Grant ID
  • : Project Title
  • : FunderInstitute for Cosmic Ray Research, University of Tokyo
  • : Grant ID
  • : Project Title
  • : FunderKorea Astronomy and Space Science Institute
  • : Grant ID
  • : Project Title
  • : FunderMinistry of Science and ICT, South Korea
  • : Grant ID
  • : Project Title
  • : FunderAcademia Sinica
  • : Grant ID
  • : Project Title
  • : FunderNational Astronomical Observatory of Japan
  • : Grant ID
  • : Project Title
  • : FunderHigh Energy Accelerator Research Organization
  • : Grant ID
  • : Project Title
  • : FunderMax-Planck-Society
  • : Grant ID
  • : Project Title
  • : FunderOrganization for Scientific Research
  • : Grant ID
  • : Project Title
  • : FunderMinisterio de Universidades
  • : Grant ID
  • : Project Title
  • : FunderConselleria de Fons Europeus
  • : Grant ID
  • : Project Title
  • : FunderActions de Recherche Concertées
  • : Grant ID
  • : Project Title
  • : FunderResearch Corporation
  • : Grant ID
  • : Project Title
  • : FunderAS Grid Center
  • : Grant ID
  • : Project Title
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)