Header

UZH-Logo

Maintenance Infos

Effect of different potassium levels in hay on acid-base status and mineral balance in periparturient dairy cows


Rérat, M; Philipp, A; Hess, H D; Liesegang, Annette (2009). Effect of different potassium levels in hay on acid-base status and mineral balance in periparturient dairy cows. Journal of Dairy Science, 92(12):6123-6133.

Abstract

Forages commonly used in dry cow rations contain high K concentrations. This results in a high dietary cation-anion difference (DCAD), which can compromise the calcium homeostasis of periparturient cows. The aim of this study was to determine the effect of 2 types of hay, fed during the prepartum period and differing in their K concentrations, on the peripartum acid-base status and mineral balance of dairy cows. During the prepartum period, the cows of group K(33) (n = 6) received a diet based on hay with a high K concentration (33 g/kg of DM), whereas the cows of group K(13) (n = 6) received a diet based on hay with a low K concentration (13 g/kg of DM). Both experimental diets were formulated to be isoenergetic and isonitrogenous. After calving, all cows received the same diet based on hay K(33). Blood and urine samples were taken on d 14, 7, and 3 before parturition, at parturition, and then daily during the first 8 d after calving. Concentrations of minerals were analyzed in both blood and urine. Creatinine was also measured in urine for the calculation of the mineral:creatinine ratio. The acid-base parameters in blood (pH and HCO(3)(-) concentration) and urine (pH, net acid-base excretion, and base-acid quotient) were determined on d 14, 7, and 3 before parturition, at parturition, and on d 1 after parturition. The use of hay K(13) reduced the DCAD value of the prepartum diet by half (195 vs. 514 mEq/kg of DM). No significant differences between the 2 groups were observed for blood acid-base indicators or plasma minerals except for the Mg plasma concentration, which tended to be higher in group K(13) from d 3 prepartum to d 2 after calving. In group K(13), urinary Ca excretion tended to be higher from d 3 prepartum to d 1 after parturition than that in group K(33). On d 3 before parturition, urinary pH and net acid-base excretion were significantly lower in group K(13) than in group K(33). On d 14, 7, and 3 before parturition, base-acid quotient was significantly lower in group K(13) than in group K(33). In group K(13), daily feed intake and hence daily intake of Ca, P, and Mg during d 3 and 4 after parturition were higher than in group K(33). The decrease of the DCAD in positive ranges by feeding a low-K hay before parturition induced a reduction of the metabolic alkalotic charge, as observed in acid-base parameters in urine, and increased the availability of Ca and P as a result of higher feed intake at the onset of lactation.

Abstract

Forages commonly used in dry cow rations contain high K concentrations. This results in a high dietary cation-anion difference (DCAD), which can compromise the calcium homeostasis of periparturient cows. The aim of this study was to determine the effect of 2 types of hay, fed during the prepartum period and differing in their K concentrations, on the peripartum acid-base status and mineral balance of dairy cows. During the prepartum period, the cows of group K(33) (n = 6) received a diet based on hay with a high K concentration (33 g/kg of DM), whereas the cows of group K(13) (n = 6) received a diet based on hay with a low K concentration (13 g/kg of DM). Both experimental diets were formulated to be isoenergetic and isonitrogenous. After calving, all cows received the same diet based on hay K(33). Blood and urine samples were taken on d 14, 7, and 3 before parturition, at parturition, and then daily during the first 8 d after calving. Concentrations of minerals were analyzed in both blood and urine. Creatinine was also measured in urine for the calculation of the mineral:creatinine ratio. The acid-base parameters in blood (pH and HCO(3)(-) concentration) and urine (pH, net acid-base excretion, and base-acid quotient) were determined on d 14, 7, and 3 before parturition, at parturition, and on d 1 after parturition. The use of hay K(13) reduced the DCAD value of the prepartum diet by half (195 vs. 514 mEq/kg of DM). No significant differences between the 2 groups were observed for blood acid-base indicators or plasma minerals except for the Mg plasma concentration, which tended to be higher in group K(13) from d 3 prepartum to d 2 after calving. In group K(13), urinary Ca excretion tended to be higher from d 3 prepartum to d 1 after parturition than that in group K(33). On d 3 before parturition, urinary pH and net acid-base excretion were significantly lower in group K(13) than in group K(33). On d 14, 7, and 3 before parturition, base-acid quotient was significantly lower in group K(13) than in group K(33). In group K(13), daily feed intake and hence daily intake of Ca, P, and Mg during d 3 and 4 after parturition were higher than in group K(33). The decrease of the DCAD in positive ranges by feeding a low-K hay before parturition induced a reduction of the metabolic alkalotic charge, as observed in acid-base parameters in urine, and increased the availability of Ca and P as a result of higher feed intake at the onset of lactation.

Statistics

Citations

Dimensions.ai Metrics
20 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

93 downloads since deposited on 10 Dec 2009
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Animal Nutrition
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Life Sciences > Food Science
Life Sciences > Animal Science and Zoology
Life Sciences > Genetics
Language:English
Date:December 2009
Deposited On:10 Dec 2009 15:27
Last Modified:03 Nov 2023 03:09
Publisher:American Dairy Science Association
ISSN:0022-0302
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3168/jds.2009-2449
PubMed ID:19923615