Header

UZH-Logo

Maintenance Infos

MnSOD marks cord blood late outgrowth endothelial cells and accompanies robust resistance to oxidative stress


Cai, H; Gehrig, P; Scott, T M; Zimmermann, R; Schlapbach, R; Zisch, A H (2006). MnSOD marks cord blood late outgrowth endothelial cells and accompanies robust resistance to oxidative stress. Biochemical and Biophysical Research Communications (BBRC), 350(2):364-369.

Abstract

Cord blood is source of colony-forming progenitors to vascular endothelial cells for potential use in cell therapies. These cells-called blood late outgrowth endothelial cells (OECs)-have undergone endothelial differentiation, but appear to still possess functional properties different from mature endothelial cells. A large-scale comparative proteomics screen of cord blood OECs versus human vein endothelial cells (HUVECs) using two-dimensional gel electrophoresis and mass spectrometry identified specific expression of manganese superoxide dismutase (MnSOD), a key antioxidant enzyme expressed in the mitochondria, in OECs but not in HUVECs. Immunoblotting verified significant MnSOD levels in all OEC isolates tested and maintained throughout passaging. Endothelial function and cell survival/proliferation assays in the presence of high cytotoxic doses of the superoxide generator compound LY83583 showed OECs profoundly better protected against oxidative stress than HUVECs. Such cytoprotective levels of MnSOD cells could give therapeutic cell transplants a survival advantage in necrotic or ischemic conditions.

Abstract

Cord blood is source of colony-forming progenitors to vascular endothelial cells for potential use in cell therapies. These cells-called blood late outgrowth endothelial cells (OECs)-have undergone endothelial differentiation, but appear to still possess functional properties different from mature endothelial cells. A large-scale comparative proteomics screen of cord blood OECs versus human vein endothelial cells (HUVECs) using two-dimensional gel electrophoresis and mass spectrometry identified specific expression of manganese superoxide dismutase (MnSOD), a key antioxidant enzyme expressed in the mitochondria, in OECs but not in HUVECs. Immunoblotting verified significant MnSOD levels in all OEC isolates tested and maintained throughout passaging. Endothelial function and cell survival/proliferation assays in the presence of high cytotoxic doses of the superoxide generator compound LY83583 showed OECs profoundly better protected against oxidative stress than HUVECs. Such cytoprotective levels of MnSOD cells could give therapeutic cell transplants a survival advantage in necrotic or ischemic conditions.

Statistics

Citations

Dimensions.ai Metrics
13 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Biophysics
Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:17 November 2006
Deposited On:18 Dec 2009 08:27
Last Modified:03 Dec 2023 02:44
Publisher:Elsevier
ISSN:0006-291X
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.bbrc.2006.09.046
PubMed ID:17010941
Full text not available from this repository.