Header

UZH-Logo

Maintenance Infos

Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children


Aeberli, I; Hurrell, R F; Zimmermann, M B (2009). Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children. International Journal of Obesity, 33(10):1111-1117.

Abstract

BACKGROUND: Obesity increases the risk for iron deficiency, but the underlying mechanism is unclear. It is possible that overweight individuals may have lower dietary iron intake and/or bioavailability. Alternatively, obesity-related inflammation may increase hepcidin concentrations and reduce iron availability. Circulating hepcidin levels have not been compared in normal weight vs overweight individuals. OBJECTIVE: The objective of this study was to compare iron status, dietary iron intake and bioavailability, as well as circulating levels of hepcidin, leptin and interleukin-6 (IL-6), in overweight vs normal weight children. DESIGN: In 6-14-year-old normal and overweight children (n=121), we measured dietary iron intake, estimated iron bioavailability and determined body mass index s.d. scores (BMI-SDS). In all children (n=121), we measured fasting serum ferritin, soluble transferrin receptor (sTfR), C-reactive protein (CRP) and leptin; in a subsample, we measured IL-6 (n=68) and serum hepcidin (n=30). RESULTS: There were no significant differences in dietary iron intake or bioavailability comparing normal and overweight children. The prevalence of iron-deficient erythropoiesis (an increased sTfR concentration) was significantly higher in the overweight than in the normal weight children (20 vs 6%, P=0.022, with sTfR concentrations of 4.40+/-0.77 and 3.94+/-0.88 mg l(-1), respectively, P=0.010). Serum hepcidin levels were significantly higher in the overweight children (P=0.001). BMI-SDS significantly correlated with sTfR (P=0.009), serum hepcidin (P=0.005) and the three measures of subclinical inflammation, namely CRP (P<0.001), IL-6 (P<0.001) and leptin (P<0.001). In a multiple regression model, serum hepcidin was correlated with BMI-SDS (P=0.020) and body iron (P=0.029), but not with the inflammatory markers. CONCLUSION: Our findings indicate that there is reduced iron availability for erythropoiesis in overweight children and that this is unlikely due to low dietary iron supply but rather due to hepcidin-mediated reduced iron absorption and/or increased iron sequestration.

Abstract

BACKGROUND: Obesity increases the risk for iron deficiency, but the underlying mechanism is unclear. It is possible that overweight individuals may have lower dietary iron intake and/or bioavailability. Alternatively, obesity-related inflammation may increase hepcidin concentrations and reduce iron availability. Circulating hepcidin levels have not been compared in normal weight vs overweight individuals. OBJECTIVE: The objective of this study was to compare iron status, dietary iron intake and bioavailability, as well as circulating levels of hepcidin, leptin and interleukin-6 (IL-6), in overweight vs normal weight children. DESIGN: In 6-14-year-old normal and overweight children (n=121), we measured dietary iron intake, estimated iron bioavailability and determined body mass index s.d. scores (BMI-SDS). In all children (n=121), we measured fasting serum ferritin, soluble transferrin receptor (sTfR), C-reactive protein (CRP) and leptin; in a subsample, we measured IL-6 (n=68) and serum hepcidin (n=30). RESULTS: There were no significant differences in dietary iron intake or bioavailability comparing normal and overweight children. The prevalence of iron-deficient erythropoiesis (an increased sTfR concentration) was significantly higher in the overweight than in the normal weight children (20 vs 6%, P=0.022, with sTfR concentrations of 4.40+/-0.77 and 3.94+/-0.88 mg l(-1), respectively, P=0.010). Serum hepcidin levels were significantly higher in the overweight children (P=0.001). BMI-SDS significantly correlated with sTfR (P=0.009), serum hepcidin (P=0.005) and the three measures of subclinical inflammation, namely CRP (P<0.001), IL-6 (P<0.001) and leptin (P<0.001). In a multiple regression model, serum hepcidin was correlated with BMI-SDS (P=0.020) and body iron (P=0.029), but not with the inflammatory markers. CONCLUSION: Our findings indicate that there is reduced iron availability for erythropoiesis in overweight children and that this is unlikely due to low dietary iron supply but rather due to hepcidin-mediated reduced iron absorption and/or increased iron sequestration.

Statistics

Citations

Dimensions.ai Metrics
110 citations in Web of Science®
110 citations in Scopus®
159 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

408 downloads since deposited on 01 Dec 2009
66 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Endocrinology and Diabetology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:October 2009
Deposited On:01 Dec 2009 08:16
Last Modified:24 Sep 2019 16:25
Publisher:Nature Publishing Group
ISSN:0307-0565
OA Status:Green
Publisher DOI:https://doi.org/10.1038/ijo.2009.146
PubMed ID:19636315

Download

Green Open Access

Download PDF  'Overweight children have higher circulating hepcidin concentrations and lower iron status but have dietary iron intakes and bioavailability comparable with normal weight children'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher