Header

UZH-Logo

Maintenance Infos

Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry


Jecklin, M C; Schauer, S; Dumelin, C E; Zenobi, R (2009). Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. Journal of Molecular Recognition, 22(4):319-329.

Abstract

We performed a systematic comparison of three label-free methods for quantitative assessment of binding strengths of proteins interacting with small molecule ligands. The performance of (1) nanoelectrospray ionization mass spectrometry (nESI-MS), (2) surface plasmon resonance (SPR), and (3) isothermal titration calorimetry (ITC) was compared for the determination of dissociation constants (K(D)). The model system studied for this purpose was the human carbonic anhydrase I (hCAI) with eight known and well characterized sulfonamide inhibitors (Krishnamurthy et al., Chem. Rev. 2008, 108: 946-1051). The binding affinities of the inhibitors chosen vary by more than four orders of magnitude e.g., the K(D) value determined for ethoxzolamide by nESI-MS was 5 +/- 1 nM and the K(D) value for sulfanilamide was 145.7 +/- 10.0 microM. The agreement of the determined K(D) values by the three methods investigated was excellent for ethoxzolamide and benzenesulfonamide (variation with experimental error), good for acetazolamide and 4-carboxybenzenesulfonamide (variation by approximately one order of magnitude), but poor for others e.g., sulpiride. The accuracies of the K(D) values are determined, and advantages and drawbacks of the individual methods are discussed. Moreover, we critically evaluate the three examined methods in terms of ease of the measurement, sample consumption, time requirement, and discuss their limitations.

Abstract

We performed a systematic comparison of three label-free methods for quantitative assessment of binding strengths of proteins interacting with small molecule ligands. The performance of (1) nanoelectrospray ionization mass spectrometry (nESI-MS), (2) surface plasmon resonance (SPR), and (3) isothermal titration calorimetry (ITC) was compared for the determination of dissociation constants (K(D)). The model system studied for this purpose was the human carbonic anhydrase I (hCAI) with eight known and well characterized sulfonamide inhibitors (Krishnamurthy et al., Chem. Rev. 2008, 108: 946-1051). The binding affinities of the inhibitors chosen vary by more than four orders of magnitude e.g., the K(D) value determined for ethoxzolamide by nESI-MS was 5 +/- 1 nM and the K(D) value for sulfanilamide was 145.7 +/- 10.0 microM. The agreement of the determined K(D) values by the three methods investigated was excellent for ethoxzolamide and benzenesulfonamide (variation with experimental error), good for acetazolamide and 4-carboxybenzenesulfonamide (variation by approximately one order of magnitude), but poor for others e.g., sulpiride. The accuracies of the K(D) values are determined, and advantages and drawbacks of the individual methods are discussed. Moreover, we critically evaluate the three examined methods in terms of ease of the measurement, sample consumption, time requirement, and discuss their limitations.

Statistics

Citations

Dimensions.ai Metrics
102 citations in Web of Science®
107 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Structural Biology
Life Sciences > Molecular Biology
Language:English
Date:2009
Deposited On:02 Dec 2009 15:50
Last Modified:23 Jan 2022 15:08
Publisher:Wiley-Blackwell
ISSN:0952-3499
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/jmr.951
PubMed ID:19373858
Full text not available from this repository.