Header

UZH-Logo

Maintenance Infos

A model to predict soil aggregate stability dynamics following organic residue incorporation under field conditions


Abiven, S; Menasseri, S; Angers, D A; Leterme, P (2008). A model to predict soil aggregate stability dynamics following organic residue incorporation under field conditions. Soil Science Society of America Journal, 72(1):119-125.

Abstract

Our ability to predict the effects of various organic amendments on soil aggregate stability is limited due to the complexity of the biological, chemical, and physical mechanisms involved. Based on previous experimental results, this study developed a model (Pouloud) to predict the dynamics of aggregate stability following the incorporation of various organic residues under field conditions. Following Monnier's conceptual model and previously published data, a lognormal function is first used to describe changes in aggregate stability after organic inputs under laboratory conditions. Using principal component analysis, the parameters of the lognormal function are associated with the biochemical characteristics of the organic products such as water-extractable polysaccharide, cellulose and hemicellulose, and lignin contents. To simulate aggregate stability dynamics under field conditions, the effects of soil moisture, soil temperature, and N availability are taken into account by specific functions obtained from the literature. When model simulations were compared with experimental results under field conditions, variations in aggregate stability were generally well reproduced. The sensitivity of the model to climate variations and organic residue characteristics was tested. Soil N availability and the substrate lignin content are major factors that influence the prediction of aggregate stability dynamics. Our results suggest that prediction of aggregate stability dynamics under field conditions using organic substrate characteristics and simple climatic data is possible. More work is required to test the model and broaden its applicability to other soil and climatic conditions.

Abstract

Our ability to predict the effects of various organic amendments on soil aggregate stability is limited due to the complexity of the biological, chemical, and physical mechanisms involved. Based on previous experimental results, this study developed a model (Pouloud) to predict the dynamics of aggregate stability following the incorporation of various organic residues under field conditions. Following Monnier's conceptual model and previously published data, a lognormal function is first used to describe changes in aggregate stability after organic inputs under laboratory conditions. Using principal component analysis, the parameters of the lognormal function are associated with the biochemical characteristics of the organic products such as water-extractable polysaccharide, cellulose and hemicellulose, and lignin contents. To simulate aggregate stability dynamics under field conditions, the effects of soil moisture, soil temperature, and N availability are taken into account by specific functions obtained from the literature. When model simulations were compared with experimental results under field conditions, variations in aggregate stability were generally well reproduced. The sensitivity of the model to climate variations and organic residue characteristics was tested. Soil N availability and the substrate lignin content are major factors that influence the prediction of aggregate stability dynamics. Our results suggest that prediction of aggregate stability dynamics under field conditions using organic substrate characteristics and simple climatic data is possible. More work is required to test the model and broaden its applicability to other soil and climatic conditions.

Statistics

Citations

Dimensions.ai Metrics
37 citations in Web of Science®
39 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 27 May 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Life Sciences > Soil Science
Language:English
Date:12 January 2008
Deposited On:27 May 2008 11:50
Last Modified:24 Jun 2022 09:33
Publisher:Soil Science Society of America
ISSN:0361-5995
OA Status:Closed
Publisher DOI:https://doi.org/10.2136/sssaj2006.0018