Header

UZH-Logo

Maintenance Infos

Accumulating evidence for the associated production of a new Higgs boson at the LHC


Crivellin, Andreas; Fang, Yaquan; Fischer, Oliver; Bhattacharya, Srimoy; Kumar, Mukesh; Malwa, Elias; Mellado, Bruce; Rapheeha, Ntsoko; Ruan, Xifeng; Sha, Qiyu (2023). Accumulating evidence for the associated production of a new Higgs boson at the LHC. Physical review D, 108(11):115031.

Abstract

n the last decades, the Standard Model (SM) of particle physics has been extensively tested and confirmed, with the announced discovery of the Higgs boson in 2012 being the last missing puzzle piece. Even though since then the search for new particles and interactions has been further intensified, the experiments ATLAS and CMS at the Large Hadron Collider (LHC) at CERN did not find evidence for the direct production of a new state. However, in recent years, deviations between LHC data and SM predictions in multiple observables involving two or more leptons (electrons or muons) have emerged, the so-called “multilepton anomalies,” pointing towards the existence of a beyond the SM Higgs boson S. While from these measurements its mass cannot be exactly determined, it is estimated to lay in the range between 130 and 160 GeV. Motivated by this observation, we perform a search for signatures of S, by using existing CMS and ATLAS analyses. Combining channels involving the associate productions of SM gauge bosons (γγ and Zγ), we find that a simplified model with a new scalar with m$_S$=151.5  GeV is preferred over the SM hypothesis by 4.3σ (3.9σ) locally (globally). On the face of it, this provides a good indication for the existence of a new scalar resonance S decaying into photons, in association with missing energy, and allows for a connection to the long-standing problem of dark matter. Furthermore, because S is always produced together with other particles, we postulate the existence of a second new (heavier) Higgs boson H that decays into S and propose novel searches to discover this particle, which can be performed by ATLAS and CMS.

Abstract

n the last decades, the Standard Model (SM) of particle physics has been extensively tested and confirmed, with the announced discovery of the Higgs boson in 2012 being the last missing puzzle piece. Even though since then the search for new particles and interactions has been further intensified, the experiments ATLAS and CMS at the Large Hadron Collider (LHC) at CERN did not find evidence for the direct production of a new state. However, in recent years, deviations between LHC data and SM predictions in multiple observables involving two or more leptons (electrons or muons) have emerged, the so-called “multilepton anomalies,” pointing towards the existence of a beyond the SM Higgs boson S. While from these measurements its mass cannot be exactly determined, it is estimated to lay in the range between 130 and 160 GeV. Motivated by this observation, we perform a search for signatures of S, by using existing CMS and ATLAS analyses. Combining channels involving the associate productions of SM gauge bosons (γγ and Zγ), we find that a simplified model with a new scalar with m$_S$=151.5  GeV is preferred over the SM hypothesis by 4.3σ (3.9σ) locally (globally). On the face of it, this provides a good indication for the existence of a new scalar resonance S decaying into photons, in association with missing energy, and allows for a connection to the long-standing problem of dark matter. Furthermore, because S is always produced together with other particles, we postulate the existence of a second new (heavier) Higgs boson H that decays into S and propose novel searches to discover this particle, which can be performed by ATLAS and CMS.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

3 downloads since deposited on 05 Jan 2024
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:26 December 2023
Deposited On:05 Jan 2024 12:58
Last Modified:28 Jun 2024 03:36
Publisher:American Physical Society
ISSN:2470-0010
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1103/physrevd.108.115031
Project Information:
  • : FunderDepartment of Science and Innovation, South Africa
  • : Grant ID
  • : Project Title
  • : FunderNational Research Foundation
  • : Grant ID
  • : Project Title
  • : FunderSouth Africa CERN
  • : Grant ID
  • : Project Title
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)