Header

UZH-Logo

Maintenance Infos

Groundwater is a hidden global keystone ecosystem


Abstract

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.

Abstract

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 15 Jan 2024
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
08 Research Priority Programs > Global Change and Biodiversity
Dewey Decimal Classification:590 Animals (Zoology)
570 Life sciences; biology
Scopus Subject Areas:Physical Sciences > Global and Planetary Change
Physical Sciences > Environmental Chemistry
Physical Sciences > Ecology
Physical Sciences > General Environmental Science
Uncontrolled Keywords:General Environmental Science, Ecology, Environmental Chemistry, Global and Planetary Change
Language:English
Date:1 January 2024
Deposited On:15 Jan 2024 09:51
Last Modified:30 Jun 2024 01:36
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1354-1013
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1111/gcb.17066
Project Information:
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)