Header

UZH-Logo

Maintenance Infos

Axon guidance at choice points.


Stoeckli, E T; Landmesser, L T (1998). Axon guidance at choice points. Current Opinion in Neurobiology, 8(1):73-79.

Abstract

The common theme in many recent axonal pathfinding studies, both in vertebrates and invertebrates, is the demonstration of the importance of a balance between positive and negative cues. The integration of multiple and often opposing molecular interactions at each site along the axon's trajectory, especially at choice points, helps to fine tune the directional response of its growth cone, which continuously samples its environment for guidance cues. The dynamic regulation of the receptors for such cues, in response to extrinsic signals, also enhances the behavioral repertoire of growth cones at different points along their trajectory. Some of the molecules identified as being important for axon guidance at choice points are conserved between invertebrates and vertebrates (e.g. Robo and netrin), whereas other molecules have been identified, so far, only in invertebrates (e.g. Comm) or vertebrates (e.g. axonin-1 and NrCAM).

Abstract

The common theme in many recent axonal pathfinding studies, both in vertebrates and invertebrates, is the demonstration of the importance of a balance between positive and negative cues. The integration of multiple and often opposing molecular interactions at each site along the axon's trajectory, especially at choice points, helps to fine tune the directional response of its growth cone, which continuously samples its environment for guidance cues. The dynamic regulation of the receptors for such cues, in response to extrinsic signals, also enhances the behavioral repertoire of growth cones at different points along their trajectory. Some of the molecules identified as being important for axon guidance at choice points are conserved between invertebrates and vertebrates (e.g. Robo and netrin), whereas other molecules have been identified, so far, only in invertebrates (e.g. Comm) or vertebrates (e.g. axonin-1 and NrCAM).

Statistics

Citations

Dimensions.ai Metrics
110 citations in Web of Science®
116 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Neuroscience
Language:English
Date:1 February 1998
Deposited On:11 Feb 2008 12:14
Last Modified:23 Jan 2022 08:28
Publisher:Elsevier
ISSN:0959-4388
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/S0959-4388(98)80010-X
PubMed ID:9568394
Full text not available from this repository.