Abstract
Neural networks that process the raw eye-tracking signal can outperform traditional methods that operate on scanpaths preprocessed into fixations and saccades. However, the scarcity of such data poses a major challenge. We, therefore, present SP-EyeGAN, a neural network that generates synthetic raw eye-tracking data. SP-EyeGAN consists of Generative Adversarial Networks; it produces a sequence of gaze angles indistinguishable from human micro- and macro-movements. We demonstrate how the generated synthetic data can be used to pre-train a model using contrastive learning. This model is fine-tuned on labeled human data for the task of interest. We show that for the task of predicting reading comprehension from eye movements, this approach outperforms the previous state-of-the-art.