Abstract
This paper characterizes predator–prey interactions amongst African mammals from C4 savanna environments using stable carbon and nitrogen isotope proxies for diet. Stable carbon (δ13C) and nitrogen (δ15N) isotope data from hair and faeces of large African mammal carnivores, and herbivores as potential prey, are presented for a diverse range of taxa. Carbon-isotope data imply that most carnivores from the “lowveld” savanna of South Africa form part of C4 grass-based food webs. Nitrogen isotope data show clear differences between trophic levels, although it appears that the magnitude of these differences varies between predators feeding on invertebrates and vertebrates, respectively. Whilst the number of carnivore samples for which data are available is relatively few, and data for prey are restricted mainly to large ungulate herbivores, results clearly demonstrate the potential for future applications of this technique to predator–prey food webs in African savannas. In tandem with traditional approaches, stable isotopes can help elucidate patterns of predator impacts on prey populations, domestic livestock, and resolving similar food webs in palaeoenvironmental contexts.