Header

UZH-Logo

Maintenance Infos

A general meta‐ecosystem model to predict ecosystem functions at landscape extents


Abstract

The integration of ecosystem processes over large spatial extents is critical to predicting whether and how local and global changes may impact biodiversity and ecosystem functions. Yet, there remains an important gap in meta‐ecosystem models to predict multiple functions (e.g. carbon sequestration, elemental cycling, trophic efficiency) across ecosystem types (e.g. terrestrial‐aquatic, benthic‐pelagic). We derive a flexible meta‐ecosystem model to predict ecosystem functions at landscape extents by integrating the spatial dimension of natural systems as spatial networks of different habitat types connected by cross‐ecosystem flows of materials and organisms. We partition the physical connectedness of ecosystems from the spatial flow rates of materials and organisms, allowing the representation of all types of connectivity across ecosystem boundaries. Through simulating a forest‐lake‐stream meta‐ecosystem, our model illustrates that even if spatial flows induced significant local losses of nutrients, differences in local ecosystem efficiencies could lead to increased secondary production at regional scale. This emergent result, which we dub the ‘cross‐ecosystem efficiency hypothesis', emphasizes the importance of integrating ecosystem diversity and complementarity in meta‐ecosystem models to generate empirically testable hypotheses for ecosystem functions.

Abstract

The integration of ecosystem processes over large spatial extents is critical to predicting whether and how local and global changes may impact biodiversity and ecosystem functions. Yet, there remains an important gap in meta‐ecosystem models to predict multiple functions (e.g. carbon sequestration, elemental cycling, trophic efficiency) across ecosystem types (e.g. terrestrial‐aquatic, benthic‐pelagic). We derive a flexible meta‐ecosystem model to predict ecosystem functions at landscape extents by integrating the spatial dimension of natural systems as spatial networks of different habitat types connected by cross‐ecosystem flows of materials and organisms. We partition the physical connectedness of ecosystems from the spatial flow rates of materials and organisms, allowing the representation of all types of connectivity across ecosystem boundaries. Through simulating a forest‐lake‐stream meta‐ecosystem, our model illustrates that even if spatial flows induced significant local losses of nutrients, differences in local ecosystem efficiencies could lead to increased secondary production at regional scale. This emergent result, which we dub the ‘cross‐ecosystem efficiency hypothesis', emphasizes the importance of integrating ecosystem diversity and complementarity in meta‐ecosystem models to generate empirically testable hypotheses for ecosystem functions.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Jan 2024
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:590 Animals (Zoology)
570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics
Language:English
Date:1 November 2023
Deposited On:24 Jan 2024 09:11
Last Modified:30 Jun 2024 01:37
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0906-7590
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/ecog.06790
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)