Header

UZH-Logo

Maintenance Infos

Nutritional content of savanna plant foods: implications for browser/grazer models of ungulate diversification


Codron, D; Lee-Thorp, J A; Sponheimer, M; Codron, J (2007). Nutritional content of savanna plant foods: implications for browser/grazer models of ungulate diversification. European Journal of Wildlife Research, 53(2):100-111.

Abstract

Models of herbivore diversification rely heavily on adaptations that reflect the nutritional quality of foods consumed. In particular, browsers and grazers are expected to show dichotomous adaptations to deal with high quality (concentrate) browse-based and poor quality grass-based diets, respectively. In this study, we test the widespread assumption that browse represents a higher quality food source than grass. We analyzed plants from a South African savanna, collected over one dry and one wet season across several habitat types, for percent nitrogen (%N), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) to compare variations in nutritional value of different food types. Results show consistently higher %N and lower NDF and ADF of tree foliage and forbs compared to monocots, but the former have consistently higher ADL, implying a higher fiber digestibility in grass compared with browse. Some fruit species have a high NDF and ADL content, implying poorer nutritional value than is commonly assumed. Our findings are in agreement with several other studies depicting relatively poor digestibility of browse (tree foliage and fruit) compared to grass. Reference to browse as high quality foods is therefore misleading, and models of herbivory that rest on this assumption require revision. The more efficient fiber digestibility recorded in grazers compared to browsers cannot be treated as an adaptation to poor quality diets, but rather to maximize benefits of higher fiber digestibility of grass. Spatio-seasonal variations in plant nutritional seem to reflect seasonal and spatial diet changes expected for grazers and intermediate (mixed) feeders. We propose that future studies require further detail on variations in diet, diet quality, and digestive efficiency to properly understand mechanisms of adaptation.

Abstract

Models of herbivore diversification rely heavily on adaptations that reflect the nutritional quality of foods consumed. In particular, browsers and grazers are expected to show dichotomous adaptations to deal with high quality (concentrate) browse-based and poor quality grass-based diets, respectively. In this study, we test the widespread assumption that browse represents a higher quality food source than grass. We analyzed plants from a South African savanna, collected over one dry and one wet season across several habitat types, for percent nitrogen (%N), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) to compare variations in nutritional value of different food types. Results show consistently higher %N and lower NDF and ADF of tree foliage and forbs compared to monocots, but the former have consistently higher ADL, implying a higher fiber digestibility in grass compared with browse. Some fruit species have a high NDF and ADL content, implying poorer nutritional value than is commonly assumed. Our findings are in agreement with several other studies depicting relatively poor digestibility of browse (tree foliage and fruit) compared to grass. Reference to browse as high quality foods is therefore misleading, and models of herbivory that rest on this assumption require revision. The more efficient fiber digestibility recorded in grazers compared to browsers cannot be treated as an adaptation to poor quality diets, but rather to maximize benefits of higher fiber digestibility of grass. Spatio-seasonal variations in plant nutritional seem to reflect seasonal and spatial diet changes expected for grazers and intermediate (mixed) feeders. We propose that future studies require further detail on variations in diet, diet quality, and digestive efficiency to properly understand mechanisms of adaptation.

Statistics

Citations

Dimensions.ai Metrics
81 citations in Web of Science®
81 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

283 downloads since deposited on 12 Feb 2010
39 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Nature and Landscape Conservation
Physical Sciences > Management, Monitoring, Policy and Law
Language:English
Date:2007
Deposited On:12 Feb 2010 14:29
Last Modified:03 Nov 2023 03:12
Publisher:Springer
ISSN:1439-0574
Additional Information:The original publication is available at www.springerlink.com
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s10344-006-0071-1