Header

UZH-Logo

Maintenance Infos

A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation


Fidon, Lucas; Aertsen, Michael; Kofler, Florian; Bink, Andrea; David, Anna L; Deprest, Thomas; Emam, Doaa; Guffens, Frédéric; Jakab, András; Kasprian, Gregor; Kienast, Patric; Melbourne, Andrew; Menze, Bjoern; Mufti, Nada; Pogledic, Ivana; Prayer, Daniela; Stuempflen, Marlene; Van Elslander, Esther; Ourselin, Sébastien; Deprest, Jan; Vercauteren, Tom (2024). A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(5):3784-3795.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

2 downloads since deposited on 26 Jan 2024
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Software
Physical Sciences > Computer Vision and Pattern Recognition
Physical Sciences > Computational Theory and Mathematics
Physical Sciences > Artificial Intelligence
Physical Sciences > Applied Mathematics
Uncontrolled Keywords:Applied Mathematics, Artificial Intelligence, Computational Theory and Mathematics, Computer Vision and Pattern Recognition, Software
Language:English
Date:May 2024
Deposited On:26 Jan 2024 09:19
Last Modified:04 Apr 2024 01:06
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0162-8828
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/tpami.2023.3346330
PubMed ID:38198270