Abstract
Visual working memory (VWM) is a temporary storage system capable of retaining information that can be accessed and manipulated by higher cognitive processes, thereby facilitating a wide range of cognitive functions. Electroencephalography (EEG) is used to understand the neural correlates of VWM with high temporal precision, and one commonly used EEG measure is an event-related potential called the contralateral delay activity (CDA). In a landmark study by Vogel and Machizawa (2004), the authors found that the CDA amplitude increases with the number of items stored in VWM and plateaus around three to four items, which is thought to represent the typical adult working memory capacity. Critically, this study also showed that the increase in CDA amplitude between two-item and four-item arrays correlated with individual subjects’ VWM performance. Although these results have been supported by subsequent studies, a recent study suggested that the number of subjects used in experiments investigating the CDA may not be sufficient to detect differences in set size and to provide a reliable account of the relationship between behaviorally measured VWM capacity and the CDA amplitude. To address this, the current study, as part of the #EEGManyLabs project, aims to conduct a multi-site replication of Vogel and Machizawa's (2004) seminal study on a large sample of participants, with a pre-registered analysis plan. Through this, our goal is to contribute to deepening our understanding of the neural correlates of visual working memory.