Header

UZH-Logo

Maintenance Infos

Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study


Abstract

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive disorder of the urea cycle. With the exception of the French-Canadian founder effect, no common mutation has been detected in other populations. In this study, we collected 16 additional HHH cases and expanded the spectrum of SLC25A15/ORC1 mutations. Eleven novel mutations were identified including six new missense and one microrearrangement. We also measured the transport properties of the recombinant purified proteins in reconstituted liposomes for four new and two previously reported missense mutations and proved that the transport activities of these mutant forms of ORC1 were reduced as compared with the wild-type protein; residual activity ranged between 4% and 19%. Furthermore, we designed three-dimensional (3D)-modeling of mutant ORC1 proteins. While modeling the changes in silico allowed us to obtain new information on the pathomechanisms underlying HHH syndrome, we found no clear-cut genotype-phenotype correlations. Although patient metabolic alterations responded well to low-protein therapy, predictions concerning the long-term evolution of HHH syndrome remain uncertain. The preference for a hepatic rather than a neurological presentation at onset also continues, largely, to elude us. Neither modifications in oxidative metabolism-related energy, such as those expected in different mtDNA haplogroups, nor sequence variants in SLC25A2/ORC2 seem to be crucial. Other factors, including protein stability and function, and ORC1-ORC2 structural interactions should be further investigated.

Abstract

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive disorder of the urea cycle. With the exception of the French-Canadian founder effect, no common mutation has been detected in other populations. In this study, we collected 16 additional HHH cases and expanded the spectrum of SLC25A15/ORC1 mutations. Eleven novel mutations were identified including six new missense and one microrearrangement. We also measured the transport properties of the recombinant purified proteins in reconstituted liposomes for four new and two previously reported missense mutations and proved that the transport activities of these mutant forms of ORC1 were reduced as compared with the wild-type protein; residual activity ranged between 4% and 19%. Furthermore, we designed three-dimensional (3D)-modeling of mutant ORC1 proteins. While modeling the changes in silico allowed us to obtain new information on the pathomechanisms underlying HHH syndrome, we found no clear-cut genotype-phenotype correlations. Although patient metabolic alterations responded well to low-protein therapy, predictions concerning the long-term evolution of HHH syndrome remain uncertain. The preference for a hepatic rather than a neurological presentation at onset also continues, largely, to elude us. Neither modifications in oxidative metabolism-related energy, such as those expected in different mtDNA haplogroups, nor sequence variants in SLC25A2/ORC2 seem to be crucial. Other factors, including protein stability and function, and ORC1-ORC2 structural interactions should be further investigated.

Statistics

Citations

Dimensions.ai Metrics
47 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 16 Dec 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Genetics
Health Sciences > Genetics (clinical)
Language:English
Date:May 2009
Deposited On:16 Dec 2009 11:46
Last Modified:27 Jun 2022 09:44
Publisher:Wiley-Blackwell
ISSN:1059-7794
Additional Information:The definitive version is available at www.blackwell-synergy.com
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/humu.20930
PubMed ID:19242930