Multinomial logistic regression based on neural networks reveals inherent differences among dairy farms depending on the differential exposure to Fasciola hepatica and Ostertagia ostertagi
Oehm, Andreas W; Leinmueller, Markus; Zablotski, Yury; Campe, Amely; Hoedemaker, Martina; Springer, Andrea; Jordan, Daniela; Strube, Christina; Knubben-Schweizer, Gabriela (2023). Multinomial logistic regression based on neural networks reveals inherent differences among dairy farms depending on the differential exposure to Fasciola hepatica and Ostertagia ostertagi. International Journal for Parasitology, 53(11-12):687-697.
Additional indexing
Item Type: | Journal Article, refereed, original work |
---|---|
Communities & Collections: | 05 Vetsuisse Faculty > Veterinärwissenschaftliches Institut > Institute of Parasitology
04 Faculty of Medicine > Institute of Parasitology |
Dewey Decimal Classification: | 610 Medicine & health
600 Technology 570 Life sciences; biology |
Scopus Subject Areas: | Life Sciences > Parasitology
Health Sciences > Infectious Diseases |
Uncontrolled Keywords: | Infectious Diseases, Parasitology |
Language: | English |
Date: | 1 October 2023 |
Deposited On: | 17 Feb 2024 17:34 |
Last Modified: | 27 Feb 2025 02:41 |
Publisher: | Elsevier |
ISSN: | 0020-7519 |
OA Status: | Hybrid |
Publisher DOI: | https://doi.org/10.1016/j.ijpara.2023.05.006 |
PubMed ID: | 37355196 |
Project Information: |
|
Permanent URL
https://doi.org/10.5167/uzh-256237Download
Links
Statistics
Citations
Dimensions.ai Metrics