Header

UZH-Logo

Maintenance Infos

Benchmarking the Persistence of Active Pharmaceutical Ingredients in River Systems


Honti, Mark; Zsugyel, Márton; Seller, Carolin; Fenner, Kathrin (2023). Benchmarking the Persistence of Active Pharmaceutical Ingredients in River Systems. Environmental Science & Technology, 57(39):14684-14693.

Abstract

Assessing the persistence of organic micropollutants from field data has been notoriously laborious, requiring extensive data including emissions and chemical properties, and the application of detailed mass-balance models, which often contain parameters that are impossible to measure. To overcome some of these obstacles, we developed the concept of persistence benchmarking for large rivers that receive numerous emissions and provide enough residence time to observe the dissipation of compounds. We estimated the dissipation rate constants of 41 compounds (mostly active pharmaceutical ingredients) from five measurement campaigns in the Rhine and Danube rivers using concentration rate profiles with respect to carbamazepine. Dissipation rates clearly distinguished between known fast- and slow-degrading compounds, and campaign-specific boundary conditions had an influence on a minor subset of compounds only. Benchmarking provided reasonable estimates on summer total system half-lives in the Rhine compared to previous laboratory experiments and a mass-balance modeling study. Consequently, benchmarking can be a straightforward persistence assessment method of continuously emitted organic micropollutants in large river systems, especially when it is supported by field monitoring campaigns of proper analytical quality and spatial resolution.

Abstract

Assessing the persistence of organic micropollutants from field data has been notoriously laborious, requiring extensive data including emissions and chemical properties, and the application of detailed mass-balance models, which often contain parameters that are impossible to measure. To overcome some of these obstacles, we developed the concept of persistence benchmarking for large rivers that receive numerous emissions and provide enough residence time to observe the dissipation of compounds. We estimated the dissipation rate constants of 41 compounds (mostly active pharmaceutical ingredients) from five measurement campaigns in the Rhine and Danube rivers using concentration rate profiles with respect to carbamazepine. Dissipation rates clearly distinguished between known fast- and slow-degrading compounds, and campaign-specific boundary conditions had an influence on a minor subset of compounds only. Benchmarking provided reasonable estimates on summer total system half-lives in the Rhine compared to previous laboratory experiments and a mass-balance modeling study. Consequently, benchmarking can be a straightforward persistence assessment method of continuously emitted organic micropollutants in large river systems, especially when it is supported by field monitoring campaigns of proper analytical quality and spatial resolution.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Chemistry
Physical Sciences > Environmental Chemistry
Uncontrolled Keywords:Environmental Chemistry, General Chemistry
Language:English
Date:3 October 2023
Deposited On:23 Feb 2024 08:48
Last Modified:30 Jun 2024 03:34
Publisher:American Chemical Society (ACS)
ISSN:0013-936X
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/acs.est.3c01627
PubMed ID:37729605
Full text not available from this repository.