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Abstract: Semantic segmentation is a growing topic in high-resolution remote sensing image pro-

cessing. The information in remote sensing images is complex, and the effectiveness of most remote

sensing image semantic segmentation methods depends on the number of labels; however, la-

beling images requires signi�cant time and labor costs. To solve these problems, we propose a

semi-supervised semantic segmentation method based on dual cross-entropy consistency and a

teacher–student structure. First, we add a channel attention mechanism to the encoding network of

the teacher model to reduce the predictive entropy of the pseudo label. Secondly, the two student

networks share a common coding network to ensure consistent input information entropy, and a

sharpening function is used to reduce the information entropy of unsupervised predictions for both

student networks. Finally, we complete the alternate training of the models via two entropy-consistent

tasks: (1) semi-supervising student prediction results via pseudo-labels generated from the teacher

model, (2) cross-supervision between student models. Experimental results on publicly available

datasets indicate that the suggested model can fully understand the hidden information in unlabeled

images and reduce the information entropy in prediction, as well as reduce the number of required

labeled images with guaranteed accuracy. This allows the new method to outperform the related

semi-supervised semantic segmentation algorithm at half the proportion of labeled images.

Keywords: cross-entropy consistency; information entropy; semi-supervised; channel attention

mechanism; remote sensing image

1. Introduction

With the continued improvements in information technology, the sensor technology
and space science technology involved in remote sensing imaging have also advanced,
and remote sensing imaging technology now plays a critically important role in Earth
observation. Remote sensing images provide information for a large number of observation
tasks, and the advances in remote sensing image technology are driving the military [ 1,2],
meteorological, and transportation �elds. In recent years, the development of satellite
imaging has been rapid, and remote sensing images have become more convenient to
obtain; the image information has become more complex [ 3], and the remote sensing
image data have grown dramatically. Thus, remote sensing images are now numerous and
complex [4].

Convolutional neural networks simplify image processing tasks [ 5], and real-time in-
telligent image processing techniques provide the basis for the development of downstream
tasks [6]. However, ef�cient deep learning models rely on supervised learning with large,
manually labeled datasets [7]. A huge labeled dataset requires a lot of time, as well as large
labor costs. The higher spatial resolution of remote sensing images [8], multiple categories,
and complex image information lead to higher costs of labeling remote sensing datasets.
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The labels also used for the semantic segmentation task require pixel-level annotation, and
the high annotation cost becomes one of the main problems limiting the development of
semantic segmentation. Many scholars have started to explore the information contained
in unlabeled images and explore the use of unlabeled images to train segmentation models,
reducing prediction information entropy, which makes semi-supervised learning models a
popular development in image segmentation.

Semi-supervised learning methods have achieved good results in the �eld of semantic
segmentation in recent years [9], reducing the costs of labels needed to train models. Zhu
et al. [10] trained a model with a few labeled images and then used the model to generate
pseudo-labels of unlabeled images directly. Then, all data have a corresponding label
or pseudo-label. The �nal dataset can then be used to train a new model, reducing the
labeling costs. However, this method relies too much on the pseudo-label of the �rst model
and the prediction results contain large information entropy. Tarvainen and Valpola [ 11]
proposed an iterative training method, which used the average weights trained by the
students as the new teacher model after each training step, and obtained good results after
iterative training through several iterations. The shortcomings of the teacher model were
corrected by the iterative method, but the iterative iteration introduced a large amount
of computation.

The consistency regularization method proposed by Luo et al. [ 12] indicates that for
the same pixel, after different perturbations, the information entropy in predictions should
be consistent, and for the input after different disturbances, the information entropy in
predictions should be consistent. This method places an entropy consistency constraint
on the image predictions and is now a widely used method in semi-supervised learning.
Ke et al. [13] processed the input images with different interference, went through two
segmentation networks with different parameter initialization and an identical structure,
and forced the information entropy in prediction consistency between the two networks.
Zou Y et al. [14] proposed to classify the image perturbation into two types of strong
and weak perturbation, and to use the prediction results of weak perturbation [ 15] pro-
cessed as the pseudo-label of strong perturbation, because the prediction results after
weak perturbation are more stable, and this novel method promotes the development of
semi-supervised learning.

Chen X et al. [16] proposed a cross-pseudo supervision model (CPS) based on the
above approach, and the predictions under different perturbation models are used as
pseudo-labels for mutual supervision. This method not only has a clear model but also a
good training effect, which fully exploits the hidden information in the unlabeled images.
This method achieves signi�cant results, but for the remote sensing images, the overlap rate
between categories is high, and the local categories are many and complex; this also means
that more comprehensive training is required. Wu et al. [ 17] designed a semi-supervised
segmentation model consisting of an encoding [ 18] network and two different decoding
networks based on the consistency regularization. The resultant bias of the two decoding
networks is set to unsupervised loss, thus promoting prediction consistency between the
two decoding networks and allowing the model to fully understand the large amount of
information in unlabeled images.

In summary, the reasonable use of unlabeled images, reducing the information entropy
of unsupervised predictions [ 19–21], enabling the model to fully exploit the hidden infor-
mation in unlabeled images, and lowering the labeling costs are the keys of our research.

We propose the semi-supervised semantic segmentation of remote sensing images
based on dual cross-entropy consistency with a model designed based on the teacher–
student architecture. A channel attention (CA) mechanism [ 22,23] is added to the teacher
model to �lter the feature information and lower the information entropy of pseudo-label
data. The student model with a dual decoding network through single coding networks
ensures the consistency of the information entropy of the coding network results. The
model is trained alternately through two tasks based on dual cross-entropy consistency,
the pseudo-label of the teacher model, semi-supervision of the student models, and cross-
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supervision between the student models. This allows our method to exploit the hidden
information in the unlabeled dataset, reduce the prediction information entropy, and lower
the labeled image costs.

2. The Proposed Model
2.1. Semi-Supervised Segmentation Model Based on Dual Cross-Entropy Consistency

Our model includes a teacher model and dual student models. We use Unet [ 24] as
our basic convolutional neural network because of its symmetric structure. The teacher
model adds a CA mechanism to the coding network to �lter feature information, highlight
target features, and suppress noisy information, thus reducing the information entropy
of unsupervised prediction. The two student models share a common coding network;
the dual-decoding network architecture ensures that the output vectors of the coding
network have consistent information entropy. A sharpen function [ 25] is used to reduce the
information entropy of the unlabeled images' predictions, and to improve the con�dence
of edge contours. The model is shown in Figure 1 below.

In each round of training, the dataset is divided according to the labeled set. We �rst
train the teacher model with the labeled set, and the supervised loss is calculated by the
ground truth and the parameters are updated. Next, the unlabeled set is used to generate
pseudo-labels [26] by using the Hadamard product [ 27] and linear transformations of
the predicted results and original images. We use these pseudo-labels to semi-supervise
the predictions of the student models S1, S2, calculate the pseudo-supervised loss, and
update the encoding network (S)–decoding network (S1) model and the encoding network
(S)–decoding network (S2) model in turn. Finally, we obtains pseudo-labels (S1, S2) via
the predictions of both student decoding networks and the original image, and update the
parameters in turn via cross-supervision loss. The dual-entropy consistency tasks include
a teacher model for the dual student models' prediction information entropy consistency
task and a cross-supervised entropy consistency task between two student models. The
models are trained with alternating constraints by the two entropy consistency tasks, so
that the model can fully understand the feature information in the unlabeled images and
reduce the prediction information entropy.

Figure 1. Semantic segmentation model based on dual consistent regularization.



Entropy2023, 25, 681 4 of 13

2.2. Channel Attention Mechanism

In the task of the semantic segmentation of remote sensing images, the procedure
often involves many categories and a complex topography, with many overlaps between
categories, and the features between categories are not prominent, etc. The CA mechanism
is widely used in remote sensing image processing because the CA mechanism can effec-
tively �lter the feature map and suppress noise interference. Therefore, we add the CA
module to the teacher coding network to constrain the feature extraction and reduce the
information entropy generated by the coding network. The CA mechanism is shown in
Figure 2 below.

Figure 2. The CA mechanism.

The mathematical description of the channel attention mechanism module is as follows.
First, we perform adaptive global average pooling and adaptive global maximum pooling
on the input feature map F(F = RH � W� C), respectively, and pass the results through the
fully connected layer and the RELU function to obtain two vectors, Uavg and Umax, with
global sense �elds. The speci�c forms are shown in Equations (1) and (2).

Uavg = FC2(RELU(FC1(avgPooling(F)))) , (1)

Umax = FC2(RELU(FC1(max Pooling(F)))) , (2)

Subsequently, the two vectors are fused channel by channel and then activated by the
sigmoid nonlinear function, as shown in Equation (3). This is because the maximum and
average pooling can screen channels from different angles. After the fusing by the channel,
the sigmoid nonlinear activation function can be used to obtain an ideal weight U. Finally,
the weight U is multiplied channel by channel with the input feature map, as shown in
Equation (4). The new feature map F

0
, generated after feature information screening, can be

used for subsequent segmentation tasks by highlighting the effective feature information
and suppressing invalid information.

U = sigmoid(Uavg � Umax), (3)

F
0
= U 
 F, (4)
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2.3. The Sharpen Function

In the semantic segmentation algorithm based on consistency regularization, scholars
usually assume that the �nal prediction boundary should not pass through the high-
density region of edge pixel distribution, requiring low-entropy output for unlabeled
images. The method using pseudo-label supervision is a type of unsupervised learning,
and the generated pseudo-label will have unclear details, a low con�dence level, and
high information entropy, so the sharpen function [ 11] for the prediction results of student
models can maximize the entropy reduction. The sharpen function is shown in Equation (5).

S(y, T) =
(y)1/ T

K
å

i= 1
(y)1/ T

, T 2 (0, 1), (5)

where y is the prediction result of the network, K is the number of channels of the network
output, and T is a hyperparameter in the interval (0, 1).

2.4. Loss Function

Normally, we use the softmax operation to obtain the prediction; this is to ensure that
the prediction is �nally mapped to the (0, 1) interval. The most classical loss function for
semantic segmentation, the pixel-level cross-entropy [28] loss, which is able to examine
each pixel individually, compares the predictions for each pixel class with the label. The
cross-entropy is de�ned by the following Equation (6).

CE(yi , y
0

i ) = � å
i

(yi log(y
0

i ) + ( 1 � yi ) log(1 � y
0

i )) , (6)

where y
0

i is the label class of any pixel i, and yi is the predicted result at i.
For the dataset D, we divide it into a labeled dataset D l of size N and an unlabeled

dataset Du of size M. The initialized weights of the teacher encoding network ( Et ) and the
teacher decoding network ( Dt ) are qe-t and qd-t . D l is used as supervised learning to train
the teacher models. For input image x, the corresponding higher-order semantic vector Vx is
�rstly obtained through the teacher model encoding network, and secondly the �nal predic-
tion Pt is obtained through the decoding network, as shown in Equations (7) and (8) below.

Vx = Et (x : qe� t )( x 2 D l ), (7)

Pt = Dt (Vx : qd� t )( x 2 D l ), (8)

The supervised loss Lt is calculated from the predicted results of the teacher model with
labels, as shown in Equation (9).

Lt =
1
N å x2 D l

1
W � H

W� H

å
i= 1

lce(Pt
i ,Y�

i ), (9)

where W and H represent the width and height of the input image, i represents any pixel
of the output image, Pt

i represents the predicted value of the prediction result Pt at pixel i,
lce represents the loss function mentioned in Equation (6), Y� represents the ground truth
of the input image x, and Y�

i represents the true class of pixel i in the label.
For unlabeled dataset Du of size M, the image x is �rst input to the teacher model to

obtain the teacher prediction Pt , and the pseudo-label Yt is obtained by the input image
x and Pt . For the student models, the initialized weights of the encoding network ( Es) is
qe-s and the decoding network ( Ds) are qd-s1 and qd-s2, respectively. For the input unlabeled
image x, the corresponding higher-order semantic vector Vx is �rstly obtained by the
student coding network, and the �nal prediction results are obtained by the two decoding
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networks. Reducing the output information entropy with the sharpen function, the �nal
outputs Ps1, Ps2 are given by the following Equations (10)–(12).

Vx = Es(x : qe� s)( x 2 Du), (10)

Ps1 = S(Ds(Vx : qd� s1))( x 2 Du), (11)

Ps2 = S(Ds(Vx : qd� s2))( x 2 Du), (12)

The pseudo-supervised loss of Yt on Ps1, Ps2 was

Lt � s1 =
1
M å x2 Du

1
W � H

W� H

å
i= 1

lce(Ps1
i ,Yt

i ), (13)

Lt � s2 =
1
M å x2 Du

1
W � H

W� H

å
i= 1

lce(Ps2
i ,Yt

i ), (14)

In Equations (13) and (14), Lt � s1 and Lt � s2 represent the pseudo-supervised losses of the
teacher model pseudo-label for the two student models, respectively; Ps1

i , Ps2
i represent the

predicted values of Ps1, Ps2 at pixel i. Yt
i represents the category of the pixel i in the label.

For the cross-supervision of the two student models, we create the pseudo-labels Ys1,
Ys2 via the input image x and the �nal outputs Ps1, Ps2 of the two models. The prediction
results corresponding to the cross-supervision of the two pseudo-labels are obtained as the
cross-supervised loss.

Ls2� s1 =
1
M å x2 Du

1
W � H

W� H

å
i= 1

lce(Ps1
i ,Ys2

i ), (15)

Ls1� s2 =
1
M å x2 Du

1
W � H

W� H

å
i= 1

lce(Ps2
i ,Ys1

i ), (16)

Ls2� s1 and Ls2� s1 in Equations (15) and (16) above represent the supervisory loss of
pseudo-label Ys2 on student model S1 and the supervisory loss of pseudo-label Ys1 on
student model S2, respectively. Ps1

i , Ps2
i represent the predicted values of Ps1, Ps2 at pixel

i; Ys1, Ys2 represent the pseudo-labels of the two student models. Ys1
i , Ys2

i represent the
category of pixel point i in the pseudo-label in the label.

In summary, the semi-supervised loss includes the semi-supervised loss of the teacher
to the dual students, and the cross-supervised loss of the dual students. We use this dual
entropy consistency task to implement iterations of the student models so that the model
fully understands the feature information in the unlabeled images, reduces the prediction
information entropy, and improves the prediction accuracy.

3. Experiments
3.1. Experimental Dataset and Environment

In order to verify the effectiveness of the proposed semantic segmentation method for
semi-supervised remote sensing images, we selected the Potsdam and Vaihingen datasets
from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the
Gaofen 2 satellite image dataset (GID) from more than 60 cities in China. The Potsdam
dataset contains 38 images in TIF format with a spatial resolution of 5 cm and a size of
6000� 6000. The dataset is divided into six categories: impervious surface, building, low
vegetation, tree, car, and clutter. The Vaihingen dataset contains 33 images in TIF format,
with a spatial resolution of 9 cm. However, the image sizes are not consistent. The average
size is 2494� 2064 and the dataset is divided into the same six categories as Potsdam.
The GID [29] dataset contains 150 images of the satellite with a size of 7200� 6800. The
size and format are consistent with the original images. The dataset is divided into �ve
categories: farmland, forest, building, meadow, and water. Three datasets provide the
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corresponding labeled images for each image. For better experiments, all datasets are
cropped to 512 � 512 size, and 10% of the dataset is selected as test images, while the rest
of the images are used for model training.

Our experiments were implemented on a computer equipped with an NVIDIA
RTX3060Ti GPU and INTEL 12400F CPU using the Pytorch framework. The batch size was
set to 4, and the model was trained with the Adam optimizer with default parameters and
aided by the Cosine warmup learning rate strategy [ 30]. The initial learning rate was set to
0.001, the number of training iterations was 100 epochs, and T was set to 0.5.

3.2. Evaluation Indicators

At present, academics usually measure the performance of semantic segmentation
algorithms from three aspects: running time, memory occupation, and accuracy. Because
accuracy is the most objective, we focus on the evaluation indicators of semantic segmen-
tation accuracy. This mainly includes PA, MPA, Iou, MIou, recall, F1-score, etc. Among
them, MIou is concise and representative, and it is the most commonly used indicator
in the evaluation of semantic segmentation experiments. The de�nitions and calculation
equations are detailed as follows.

(1) Iou: the ratio between the intersection of the predicted result and the ground truth.
The de�nition is shown in Equation (17).

Iou =
n

å
i= 1

pii

t i +
k
å

j= 1
(pji � pii )

, (17)

(2) MIou: the average value of the accumulated IoU values of each class of image
pixels, as shown in Equation (18).

MIou =
1
n

n

å
i= 1

pii

t i +
k
å

j= 1
(pji � pii )

, (18)

where n represents the number of classes of pixels;pii represents the number of pixels
whose actual class isi and whose predicted class is i; t i represents the total number of pixels
of class i; pji represents the number of pixels whose actual class isi and predicted class is j.

3.3. Analysis of the Experimental Results

To verify the performance of our method, experiments were conducted on three
datasets using different proportions of labeled images, and the method proposed was com-
pared with the current popular semi-supervised and fully supervised methods. The com-
parison methods include three sets of fully supervised algorithms, Unet, Attention-Unet,
and U2-Net [ 31]; and three sets of semi-supervised algorithms, Mean Teacher, CPS, and DST-
CBC [32]. Table 1 gives the MIou performance for the related methods on three datasets.

Table 1 shows that our algorithm has poor training results for the teacher model
when the label image proportion is low, the cross-training of the two student models
cannot obtain good results, and the overall segmentation results are lower than other
semi-supervised models. As the proportion of labeled images increases, alternate training
of the dual-entropy consistency tasks shows an advantage, and when the proportion of
labeled images reaches 1/2, the segmentation results of our algorithm surpass those of the
other semi-supervised models. After introducing the sharpen function, the segmentation
results of the model at the label image proportion of 1/2 are already higher than those of
some fully supervised learning models. From the above results, we can see that our model
can effectively improve the feature extraction ef�ciency of the model coding network and
reduce the pseudo-label information entropy after adding the channel attention mechanism.
The dual-entropy consistency tasks of the two student models are poor when the label
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image proportion is small, but as the proportion increases, the advantages of the dual-
entropy consistency tasks are then re�ected. Table 2 shows the MIou performance of our
algorithm for each category on three datasets with different labeled image proportions.

Table 1. The MIou performance results for above methods on three datasets.

Dataset Method
Labeled Image Proportion

1/8 1/4 1/2 1

Potsdam

Unet - - - 78.2
Attention-Unet - - - 81.4

U2-Net - - - 81.3
MeanTeacher 70.5 72.1 76.1 -

CPS 73.4 75.2 77.8 -
DST-CBC 73.3 75.4 78.3 -

Our Algorithm 71.2 74.9 80.5 82.1

Vaihingen

Unet - - - 76.8
Attention-Unet - - - 78.1

U2-Net - - - 78.3
MeanTeacher 70.2 72.1 73.8 -

CPS 71.7 72.8 74.0 -
DST-CBC 72.3 73.4 74.9 -

Our Algorithm 71.0 73.5 77.4 78.4

GID

Unet - - - 79.8
Attention-Unet - - - 81.1

U2-Net - - - 81.2
MeanTeacher 70.9 72.5 75.8 -

CPS 72.6 75.7 76.4 -
DST-CBC 72.4 75.1 76.5 -

Our Algorithm 72.1 76.3 81.8 82.1

Table 2. The results for each category with different labeled image proportions on three datasets.

Dataset Method Category
Labeled Image Proportion
1/8 1/4 1/2 1

Potsdam Our Algorithm

Impervious surface 75.2 77.1 83.6 85.5
Building 76.9 81.8 86.3 87.3

Low vegetation 67.1 71.8 76.4 78.7
Tree 71.7 74.8 81.6 82.3
Car 69.5 73.1 78.8 80.7

Clutter 66.9 70.8 76.3 77.9

Vaihingen Our Algorithm

Impervious surface 73.5 76.9 79.4 81.9
Building 77.9 81.0 83.4 85.2

Low vegetation 70.5 71.6 76.2 75.9
Tree 72.1 73.9 79.1 78.3
Car 59.2 62.2 66.5 68.5

Clutter 72.8 75.4 79.8 80.6

GID Our Algorithm

Farmland 73.7 77.6 82.5 84.1
Forest 79.2 83.0 88.2 87.7

Building 77.2 81.2 86.5 86.6
Meadow 59.5 64.4 70.9 71.5

Water 71.1 75.3 80.9 80.5
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The data in Table 2 shows that the MIou results for each class also conform to the
overall distribution pattern, with a small performance improvement when the labeled
image proportion is small. Our method has a larger rate of training result improvement as
the labeled image proportion increases, which also saves a large part of the labeling cost.
The effect of increasing the labeled image proportion is also found in the low vegetation
class of the Vaihingen dataset and the forest class of the GID, which has a negative effect.
This also means that we cannot simply increase the labeled image proportion and need to
�nd the optimal connection between our dual cross-entropy consistency method and the
labeled image proportion.

The prediction results on the three datasets are given in Figures 3–5. The results show
that the best segmentation is achieved on the dataset when the labeled image proportion is
1/2, with outstanding segmentation details, no obvious mis-segmentation and breakpoints,
and minimum information entropy.

Figure 3. The predictions with different labeled image proportions on Potsdam.

Figure 4. The predictions with different labeled image proportions on Vaihingen.
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Figure 5. The predictions with different labeled image proportions on GID.

3.4. Ablation Experiment

To verify the impact of the mentioned methods on our model, the model without the
channel attention module and sharpening function processing was used as the baseline
model, comparing the baseline model with the two methods added separately. The experi-
mental results are shown in Table 3 below, where baseline + CA method indicates that the
CA module is added to the baseline model; baseline + sharpen (s1) and baseline + sharpen
(s2) indicate that sharpening is added to only one student model in the baseline model,
and baseline + sharpen indicates that sharpening is added to the baseline model for both
student models.

Table 3. Ablation experiments of each method.

Dataset Labeled Image Proportion Method MIou (%)

Potsdam 1/2

Baseline 75.8
Baseline + CA 76.3

Baseline + sharpen (s1) 77.2
Baseline + sharpen (s2) 77.4

Baseline + sharpen 78.1
Our Algorithm 80.5

Vaihingen 1/2

Baseline 72.3
Baseline + CA 72.9

Baseline + sharpen (s1) 73.5
Baseline + sharpen (s2) 73.4

Baseline + sharpen 74.6
Our Algorithm 77.4

GID 1/2

Baseline 75.3
Baseline + CA 76.5

Baseline + sharpen (s1) 77.2
Baseline + sharpen (s2) 77.0

Baseline + sharpen 79.1
Our Algorithm 81.8

The experimental results in Table 3 show that both the channel attention mechanism
and the sharpening function play a role in improving the segmentation network. The
results show that the semi-supervised loss in the experiments requires the pseudo-labeling
of the teacher model to semi-supervise the two student models, and also requires the two
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student models to generate their own pseudo-labeling for cross-supervision. The single CA
mechanism can lower the pseudo-label information entropy, and the sharpening function
can improve the edge contour accuracy of the unsupervised prediction. Moreover, the
combined use of the two methods can make the pseudo-labels on the teacher side and
the student side more realistic, thus improving the semi-supervised learning ef�ciency
and accuracy.

According to the experimental data in Tables 1 and 2, we can see that when the
proportion is 100%, most of the experimental results are better than the results compared
to when the proportion of labeled images is 1/2. To ensure the segmentation accuracy on
the premise of maximizing the reduction of the required label costs, we take the labeled
image proportion from 10% to 100%, and increase the labeled images by 10% each time,
and the impact of different labeled image proportions on the segmentation results is shown
in Figure 6 below.

Figure 6. Ablation experiments of the effect of different labeled image proportions on the results.

The dashed lines in Figure 5 represent the segmentation baselines of Unet; our model
already outperforms the Unet network under supervised learning when the labeled image
proportion is less than 50%, and the proportion has a greater effect on the results when the
labeled image proportion is less than 50%. The result of Potsdam increases the most when
the labeled image proportion is between 40% and 50%. The model improvement is most
obvious for the Vaihingen dataset at 30% to 40% of the data, after which the model accuracy
improves slowly as the labeled image proportion increases. The GID dataset shows a slight
negative growth after the labeled image proportion exceeds 60%, which also proves that
the over-computation of the method based on the entropy consistency constraint is not
only cost-consuming but also leads to an increase in entropy. In conclusion, our model
based on the dual cross-entropy consistency method achieves good segmentation results
with 1/2 the labeled image proportion and signi�cantly reduces the labeling costs.

4. Conclusions

We propose a semi-supervised remote sensing image semantic segmentation method
based on dual entropy consistency to solve the problem of complex remote sensing image
information and the large manual labeling cost required for remote sensing image seg-
mentation tasks. Our teacher model incorporates a channel attention mechanism in the
coding network of Unet to help the model to reduce the predictive information entropy
of pseudo-labeling. Two student models share a coding network to ensure consistent
input entropy, while sharpening the prediction results of the two student models to reduce
the information entropy of unsupervised prediction and improve the accuracy of edge
contours. The two student models need to be semi-supervised by the teacher model, as
well as cross-supervising themselves. These two semi-supervised learning tasks based on
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entropy consistency alternately train the student models so that the student models can
fully understand the information and minimize the entropy-increasing behavior in the
prediction process. Simulation experiments show that the segmentation performance of
our method on three publicly available remote sensing image datasets exceeds the segmen-
tation accuracy of the current mainstream network models and reduces 50% of the labeled
images, which indicates good generalizability. Subsequent work will optimize the model
with respect to its computational complexity and training complexity.
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