Header

UZH-Logo

Maintenance Infos

Enterobacterales carrying chromosomal AmpC β-lactamases in Europe (EuESCPM): Epidemiology and antimicrobial resistance burden from a cohort of 27 hospitals, 2020-2022


Abstract

INTRODUCTION

The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs.

METHODS

We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020-2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated.

RESULTS

Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was the predominant technique for bacterial identification. Susceptibility to new β-lactam/β-lactamase inhibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and 29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%, 4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mechanism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae complex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates exhibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to ceftazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%).

CONCLUSIONS

This study presented a current analysis of ESCPM species epidemiology in Europe, providing insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and diagnostics.

Abstract

INTRODUCTION

The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs.

METHODS

We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020-2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated.

RESULTS

Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was the predominant technique for bacterial identification. Susceptibility to new β-lactam/β-lactamase inhibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and 29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%, 4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mechanism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae complex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates exhibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to ceftazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%).

CONCLUSIONS

This study presented a current analysis of ESCPM species epidemiology in Europe, providing insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and diagnostics.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

3 downloads since deposited on 09 Apr 2024
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:610 Medicine & health
570 Life sciences; biology
Scopus Subject Areas:Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Health Sciences > Pharmacology (medical)
Language:English
Date:1 May 2024
Deposited On:09 Apr 2024 07:42
Last Modified:30 Jun 2024 01:41
Publisher:Elsevier
ISSN:0924-8579
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.ijantimicag.2024.107115
PubMed ID:38367844
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)