Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Deletion upstream of MAB21L2 highlights the importance of evolutionarily conserved non-coding sequences for eye development

Abstract

Anophthalmia, microphthalmia and coloboma (AMC) comprise a spectrum of developmental eye disorders, accounting for approximately 20% of childhood visual impairment. While non-coding regulatory sequences are increasingly recognised as contributing to disease burden, characterising their impact on gene function and phenotype remains challenging. Furthermore, little is known of the nature and extent of their contribution to AMC phenotypes. We report two families with variants in or near MAB21L2, a gene where genetic variants are known to cause AMC in humans and animal models. The first proband, presenting with microphthalmia and coloboma, has a likely pathogenic missense variant (c.338 G > C; p.[Trp113Ser]), segregating within the family. The second individual, presenting with microphthalmia, carries an ~ 113.5 kb homozygous deletion 19.38 kb upstream of MAB21L2. Modelling of the deletion results in transient small lens and coloboma as well as midbrain anomalies in zebrafish, and microphthalmia and coloboma in Xenopus tropicalis. Using conservation analysis, we identify 15 non-coding conserved elements (CEs) within the deleted region, while ChIP-seq data from mouse embryonic stem cells demonstrates that two of these (CE13 and 14) bind Otx2, a protein with an established role in eye development. Targeted disruption of CE14 in Xenopus tropicalis recapitulates an ocular coloboma phenotype, supporting its role in eye development. Together, our data provides insights into regulatory mechanisms underlying eye development and highlights the importance of non-coding sequences as a source of genetic diagnoses in AMC.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
04 Faculty of Medicine > Zurich Kidney Center (ZKC)
Dewey Decimal Classification:610 Medicine & health
570 Life sciences; biology
Scopus Subject Areas:Physical Sciences > General Chemistry
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Physical Sciences > General Physics and Astronomy
Language:English
Date:26 October 2024
Deposited On:11 Nov 2024 07:16
Last Modified:12 Nov 2024 21:00
Publisher:Nature Publishing Group
ISSN:2041-1723
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41467-024-53553-2
PubMed ID:39455595
Download PDF  'Deletion upstream of MAB21L2 highlights the importance of evolutionarily conserved non-coding sequences for eye development'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Altmetrics

Downloads

3 downloads since deposited on 11 Nov 2024
3 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications